
CONTENTS

New Supported Processors 4

Tracing for Virtual Targets in Fast Models 5

API for VM Debugging Awareness 6

Extensions and New RTOS Versions 8

Serial Trace Port Usage Growing 9

Higher Transmission Rate for RTS 10

Energy Profiling with the CombiProbe 11

TRACE32 Expert Forum 12

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

www.lauterbach.com

NEWS 2011

Lauterbach has been developing tools for the embed-
ded industry for over 30 years advocating this slogan. For
most new debug technologies Lauterbach is the world
leader and trend setter.

This has allowed us to gain the recognition of all the big
semiconductor manufacturers. For many years, those in-
volved in developing and implementing new technologies
have favored collaboration with Lauterbach. This collab-
oration has inspired many ground breaking ideas to be
transformed into advanced products.

In addition, Lauterbach is very customer focused. The de-
sires and suggestions of our TRACE32 users provide a
valuable contribution to our product development. In many
cases, suggestions are put into practice immediately and
are then included in the next released version of our
debugger.

From this vantage point what trends does Lauterbach cur-
rently see? What technologies are soon to emerge in the
market?

Android Debugging

Android debugging is certainly an important topic. Ap-
plications for mobile phones are increasingly being writ-
ten architecture-independent for virtual machines (VM).
Google’s Android and its Dalvik VM are quite prevalent.

Complex errors that will only appear with the interplay of
application, virtual machine, operating system and the
underlying hardware have to be debugged. To do this it
is necessary to have transparency through all of the soft-
ware layers, from the Java application down to the Linux
hardware drivers.

At the request of some mobile phone manufacturers,
Lauterbach started developing an API for VM Debugging
Awareness in the middle of 2010. Android is used here
as a reference platform. The aim is to provide an open
interface that allows providers of open-source and closed-
source VMs to adapt their products for debugging with
TRACE32. For information on VM Debugging Awareness
and the current state of development, see the article “API
for VM Debugging Awareness” on page 6.

Always a Few Steps Ahead

NEWS 2011 www.lauterbach.com2

Energy Profiling

Energy measurement for embedded systems has come
more into focus with the increasing emphasis on global
warming and “green” electronics systems. Every techni-
cal journal now contains many articles on battery-driven
equipment and low-power microcontrollers. Prizes for
innovation are increasingly being awarded for new tech-
nologies in this field.

However, in the mobile phone market standby and
operating times have always been an important topic. For
years, extensive energy reduction measures have been
implemented in this area. But these measures only make
sense if the software that controls an embedded system
consistently uses all the energy-saving features of the
hardware.

Since the beginning of 2006, Lauterbach tools have sup-
ported measuring arrangements that allow the simple
comparison and analysis of the interplay between soft-
ware and power consumption in an embedded system.
This technology has also been available for the TRACE32
CombiProbe since mid 2010. For more information on
“Energy Profiling with the CombiProbe”, see page 11.

Multicore Debugging

Although multicore chips have been used in embedded
systems for ten years and Lauterbach has had debuggers
for them since 2001, this is still a highly dynamic topic.
The current calls for greater visibility into the internal sys-
tem operation are ensuring the integration of new trace
cells within the debug infrastructure of the chips.

Originally, trace information was only generated for the
individual cores, whereas today there are many other
trace sources:

a) Trace sources that make transfers on chip-internal
buses visible:

•	 ARM	CoreSight	with	 the	AMBA	AHB	Trace	Macrocell	
(HTM)

•	 RAM	Trace	Port	for	chips	from	Texas	Instruments

•	 DMA	 and	 FlexRay	 trace	 for	 NEXUS	 Power	 Architec-
ture

•	 MCDS	with	the	System	Peripheral	Bus	(SPB)	and	the	
Local Memory Bus (LMB) for the TriCore from Infineon

b) Trace sources that generate trace information for chip-
internal IP (Intellectual Property), such as special inter-
rupt traces (see Fig. 1).

c) Trace sources that permit the output of software-gener-
ated trace information, such as:

•	 Instrumentation	Trace	 Macrocell	 (ITM)	 for	 ARM	 Core-
Sight

•	 System	Trace	Macrocell	(STM)	for	ARM	CoreSight

The continuous development of the TRACE32 debugger
ensures it is aware of these new trace sources and can
provide easy configuration and a comprehensive analysis
of the information provided.

Serial Trace Ports

Due to the extra trace data provided by this visibility into
the internal chip processes, complex multicore chips and
high-performance processors require more and more
bandwidth and thus even faster trace ports.

In response chip manufacturers have developed serial
trace ports (see Fig. 2) as an important innovation in the
last few years. Hard-disk manufacturers, who have been
using serial interfaces for high-speed data exchange with

the PC for years,
used this technol-
ogy for the first
time in 2008 to
export trace infor-
mation via ARM’s
High Speed Serial
Trace Port (HSSTP).
At the same
time, Lauterbach
launched trace tools
for this technology.

Fig. 1: Interrupt trace, Cortex M3.

Fig. 2: Serial interface for high-speed export of trace information.

3

In the meantime, there are other processor families with
serial trace interfaces. For current developments in this
area, see the article “Serial Trace Port Usage Growing”
on page 9.

Bigger Trace Memory

Fast trace interfaces with their high data rates inevitably
require more trace memory. Without this, it is impossible
to capture a sufficiently large program section for trouble-
shooting and the analysis of the time behaviour for an
embedded system.

However, providing more and more trace memory only
makes sense if the necessary infrastructure for fast pro-
cessing of the trace information is available. This applies
particularly to demanding trace analysis functions such
as Trace-based Debugging (see Fig. 3). The increasing
capacity of SDRAM chips, fast PCs, and GB Ethernet
interfaces enabled Lauterbach to launch the trace tool
PowerTrace II with 4 GB memory in 2007.

In mid-2008, Lauterbach started developing a new method
of trace recording and analysis, Real-time Streaming.
This development was driven by customers’ demands for
long-term code coverage analysis, for comprehensive
system runtime analyses and for a much longer trace
recording time to locate infrequent errors.

The new feature of Real-time Streaming is that the trace
data is transferred to the host while it is being recorded.
The trace information is then analyzed on the host as soon
as it is received. Optionally, the trace information can also
be saved to the hard-disk while it is being analyzed.

Real-time Streaming works only if all processing steps
for the trace data run at optimal speed. This applies to
transfer and analysis, as well as the systematic search for
trace information in a file saved to the hard disk.

Conventional tracing also profits from many of the new
speed optimizations. For example, there are plans to im-
plement the trace-data compression (developed for Real-
time Streaming) also for conventional tracing. For details
on the trace-data compression, see page 10.

Outlook

In addition to the current trends, there are a large num-
ber of new developments in debug technology. When you
browse through our 2011 newsletter, you will probably
discover one or two of these that might help with your
project. We will be demonstrating several of them live at
many shows worldwide throughout the year.

Trace-Based Debugging

Trace-based Debugging (also known as CTS = Con-
text Tracking System) allows re-debuggging of a
traced program section.

TRACE32 makes this possible as it can reconstruct
the state of the target system for each individual
trace record in its PowerView GUI. This reconstruc-
tion includes:

•	 Source	listing	and	task	listing
•	 The	register	and	memory	contents
•	 Variable	states	and	stack-frame
•	 and	much	more

After choosing a starting point for Trace-based
Debugging, all of the debug commands can be used.
These commands are executed by TRACE32 based
upon the reconstruction from the trace recording.
Many users of Trace-based Debugging appreciate
the fact that they can also step backwards or return
to the function start.

Trace-based Debugging also provides a series of
other useful functions:

 •	Trace	 display	 in	 high-level	 language	 with	 all	
local variables

 •	Runtime	analyses	and	function	call	tree
 •	Reconstruction	of	the	trace	gaps	that	can	occur	if	

more trace data is being generated than can be ex-
ported via the trace port

www.lauterbach.com/cts.html

Fig. 3: Even demanding 4-GB trace memory analysis for Trace-based
Debugging can be performed quickly.

NEWS 2011 www.lauterbach.com4

New Supported Processors

Actel LA-7844 (Cortex-M)
•		A2F060,	A2F200,	A2F500

AppliedMicro LA-7723 (PPC400)
•		APM80186,	APM821x1
•		APM86290
LA-7752 (PPC44x)
•		PPC460SX

ARM LA-7843 (Cortex-A/R)
•		Cortex-A15
•		Cortex-A15	MPCore
LA-7844 (Cortex-M)
•		Cortex-M4
•		SC000,	SC300

Atmel LA-7844 (Cortex-M)
•		AT91SAM3S,	AT91SAM3N
LA-3779 (AVR32)
•		AT32UC3A	/	B	/	C	/	D	/	L

Broadcom LA-7760 (MIPS32)
•		BCM3549	/	35230	/	4748
•		BCM5354	/	5358		/	5331X	
•		BCM6816	/	6328	/	6369
•		BCM7407	/	7413	/	7420

Cavium LA-7761 (MIPS64)
•		CN63XX

Ceva LA-3711 (CEVA-X)
•		CEVA-X1643,	CEVA-XC

Cortus LA-3778 (APS)
•		APS3	/	B	/	BS	/	S

Cypress LA-7844 (Cortex-M)
•		PSoC5

Faraday LA-7742 (ARM9)
•		FA726TE

Freescale LA-7736 (MCS12X)
•		MCS9S12GC	/	GN	/	Q
LA-7732 (ColdFire)
•		MCF5301x,	MCF5441x
LA-7845 (StarCore)
•		MSC8156
LA-7742 (ARM9)
•		i.MX28
LA-7843 (Cortex-A/R)
•		i.MX53
LA-7844 (Cortex-M)
•		Kinetis

Freescale
(Cont.)

LA-7753 (MPC55xx/56xx)
•		MPC5602D	/	P
•		MPC564XA	/	B	/	C	/	S
•		MPC567XF	/	R

LA-7729 (PowerQUICC II)
•		MPC830X

LA-7764 (PowerQUICC III)
•		P10xx,	P20xx,	P40xx
•		P3041	(2H/2011)
•		P5010,	P5020	(2H/2011)

Fujitsu LA-7844 (Cortex-M)
•		FM3

Infineon LA-7756 (TriCore)
•		TC1182,	TC1184
•		TC1782,	TC1782ED
•		TC1784,	TC1784ED
•		TC1791,	TC1791ED
•		TC1793,	TC1793ED
•		TC1798,	TC1798ED

LA-7759 (XC2000/C166S V2)
•		XC22xxH	/	I	/	L	/	U
•		XC23xxC	/	D	/	E	/	S
•		XC27x2	/	x3	/	x7	/	x8
•		XE16xFH	/	FU	/	FL

Intel® LA-3776 (Atom™/x86)
•		E6xx,	Z6xx,	N470
•		Core	i3	/	i5	/	i7,	Core2	Duo

Lantiq LA-7760 (MIPS32)
•		XWAY	xRX200

LSI LA-7765 (ARM11)
•		StarPro2612,	StarPro2716
LA-7845 (StarCore)
•		StarPro2612,	StarPro2716

Marvell LA-7742 (ARM9)
•		88F6282,	88F6283,	88F6321
•		88F6322,	88F6323
LA-7765 (ARM11)
•		88AP510-V6
LA-7843 (Cortex-A/R)
•		88AP510-V7

MIPS LA-7760 (MIPS32)
•		MIPS	M14K,	MIPS	M14KC

Netlogic LA-7761 (MIPS64)
•		XLR,	XLS

NXP LA-7844 (Cortex-M)
•		LPC11xx
•		EM773

New derivates

5

Fig. 4: TRACE32 supports the debugging and tracing of virtual targets.

Tracing for Virtual Targets in Fast Models

Lauterbach has supported tracing for ARM Fast
Models since November 2010.

To avoid having to wait for the first hardware prototypes
before starting software development, software models
of the hardware are often used. With Fast Models, ARM

offers its customers a software package for programming
models for ARM-based designs.

Since 2008, Lauterbach has supported the debugging
of Fast Models over the CADI interface. It has now intro-
duced support for the Model Trace Interface, which was
introduced	 for	Fast	Models	with	Version	5.1.	To	prepare	
the trace information appropriately and buffer it in the
virtual target, debugger manufacturers can load a sepa-
rate trace plugin. Fig. 4 shows an overview of the interplay

of TRACE32 and Fast
Models.

The Model Trace Inter-
face provides program
trace as well as data
trace. Thus all standard
TRACE32 profiling fea-
tures are usable.

Detailed information on
debugging virtual targets:

www.lauterbach.com/
frontend.html

Ralink LA-7760 (MIPS32)
•		RT3052,	RT3662

Renesas LA-3777 (78K0R / RL78)
•		78K0R	/	Hx3	/	Lx3	/	Ix3
•		78F804x,	78F805x
•		RL78	/	G12,	RL78	/	G13	

LA-3786 (RX)
•		RX610	/	6108	/	621	/	62N	/	630

STMicro-
electronics

LA-7753 (MPC55xx/56xx)
•		SPC560D/P,	SPC56APxx
•		SPC564Axx,	SPC56ELxx

LA-7844 (Cortex-M)
•		STM32F100,	STM32L15x

ST-Ericsson LA-7843 (Cortex-A/R)
•		DB5500,	DB8500

Tensilica LA-3760 (Xtensa)
•		LX3

Texas Instruments LA-3713 (MSP430)
•		MSP430xG461x
•		MSP430x20x1	/	x2	/	x3
LA-7742 (ARM9)
•		AM1707	/	1808	/	1810
LA-7843 (Cortex-A/R)
•		OMAP36xx
LA-7838 (TMS320C6x00)
•		OMAP36xx

Toshiba LA-7742 (ARM9)
•		TMPA900,	TMPA910
LA-7844 (Cortex-M)
•		TMPM330,	TMPM370

Trident LA-7760 (MIPS32)
•		HiDTV	PRO-QX

Wintegra LA-7760 (MIPS32)
•		WinPath3,	WinPath3-SL

Zoran LA-7760 (MIPS32)
•		COACH	12

New derivates

www.lauterbach.com/frontend.html

NEWS 2011 www.lauterbach.com6

API for VM Debugging Awareness

Since 2006, Lauterbach has supported the debugging
of Java applications for the Java Virtual Machines
J2ME CLDC, J2ME CDC and Kaffe. Since virtual ma-
chines are increasing in popularity, the number of
providers is growing. Nowadays not all of these virtu-
al machines are open-source. To enable VM providers
and their customers to adapt debugging flexibly for
their VM, Lauterbach has been working on a solution
since mid-2010.

The Android Dalvik Virtual Machine implemented for ARM
cores is used as a reference for the development of a VM
API for stop-mode debugging.

Two Debug Worlds

For developers, Android is an open-source software stack
consisting	of	the	following	components	(see	Fig.	5):

•	 A	Linux	kernel	with	its	hardware	drivers.
•	 Android	 Runtime	 with	 Dalvik	 Virtual	 Machine	 and	 a	

series of libraries: classic Java core libraries, Android-
specific	libraries,	and	libraries	written	in	C	/	C++.

•	 Applications	programmed	in	Java	and	their	supporting	
Application Framework.

Software for Android is written in various languages:

•	 The	 Linux	 kernel,	 some	 libraries,	 and	 the	 Dalvik	
Virtual	Machine	are	coded	in	C,	C++,	or	Assembler.

•	 VM	 applications	 and	 their	 supporting	 Application	
Framework are programmed in Java.

Each block of code is tested in its own separate debug
world.

Debugging C / C++ and Assembler Code

The	Android	part	coded	in	C	/	C++	and	Assembler	can	be	
debugged on the target hardware over the JTAG interface
in stop-mode. In stop-mode debugging, the TRACE32
debugger communicates directly with the processor of
the Android hardware platform (see Fig. 6).

A characteristic of stop-mode debugging is that when
the processor is stopped for debugging, the whole
Android system stops.

Stop-mode debugging has some big advantages:

•	 It	 needs	 only	 a	 functioning	 JTAG	 communication	
between the debugger and the processor.

•	 It	needs	no	debug	server	on	the	target	and	is	therefore	
very suitable for testing release software.

•	 It	permits	testing	under	real-time	conditions	and	there-
fore enables efficient troubleshooting for problems that
only occur in such conditions.

At present, stop-mode debugging does not support the
debugging of VM applications such as on the Dalvik VM.
Therefore transparent debugging through all of the soft-
ware layers is not yet possible.

Debugging Java Code

Java code for Android is usually tested with the
Android Development Tools (ADT) integrated into Eclipse.

Fig.	5:	 The	open-source	Android	software	stack.

Fig. 6: In stop-mode debugging, the debugger communicates directly with the
processor on the Android hardware platform.

7

The adb server – adb stands for Android Debug Bridge –
on the host communicates over USB or Ethernet with the
adb daemon on the target (Fig. 7).

Prerequisites for debugging with ADT are VM applications
specially compiled for debugging and Android debug sup-
port (adb daemon) running on the hardware platform.

Debugging Java code with ADT is comfortable. How-
ever, there are a few cases in which ADT cannot help you.
These are:

•	 Errors	that	first	occur	with	the	release	code.
•	 Errors	 that	 first	 occur	 when	 the	 Java	 application	

interacts	 with	 a	 service	 offered	 in	 C	/	C++	 or	 a	 Linux	
hardware driver.

•	 Debugging	 following	 a	 communication	 breakdown	
between adb server and adb daemon.

VM Aware Stop-Mode Debugging

To enable thorough testing of an Android system from
the Java application down to the Linux hardware driv-
er under real-time conditions, Lauterbach is currently
adding VM debugging awareness to its stop-mode
debugging.

The JTAG debugger communicates directly with the pro-
cessor on the Android hardware platform. The debugger
can therefore access all system information after the pro-
cessor stops. The “fine art” for the debugger is now to find
the correct information and make it easy to understand for
the user, abstracted from bits and bytes.

One abstraction level has given TRACE32 users the
option of debugging operating system software even over

several virtual address spaces. Another abstraction level,
up to now independent of operating-system debugging, is
Java debugging.

To debug applications running on VMs in systems like
Android, where the VMs themselves are instantiated
within the operating-system processes, operating-system
debugging and Java debugging now have to be combined.
To implement this new complexity, Lauterbach is develop-
ing a new, open, and easy-to-expand solution.

The Open Solution

In the future, stop-mode debugging from Lauterbach will
support the following abstraction levels:

•	 High-level	language	debugging
•	 Target-OS	debugging	awareness
•	 VM	debugging	awareness

High-level language debugging is a fixed component of
the TRACE32 software and is configured for a program
with the loading of the symbol and debug information.

Target-OS debugging awareness must always be con-
figured by the TRACE32 user. There are example configu-
rations available for all common operating systems. The
RTOS API provides an option to be customized for propri-
etary operating systems.

VM debugging awareness is a fixed component of the
TRACE32	software	for	J2ME	CLDC,	J2ME	CDC	and	Kaffe.	
All other virtual machines have to be adapted individually
with the VM API. A ready-to-use configuration is available
for the very popular Android Dalvik VM.

The open solution, both for the operating system
and for the virtual machine, enables providers of
closed-source VMs to write a TRACE32 VM aware-
ness for their product and offer it to their customers.

Dalvik is the name of the virtual machine used in
Android. The Dalvik Virtual Machine is a software
model of a processor that executes byte code de-
rived from Java. Virtual machines permit the writing
of processor-independent software. If you switch to
a new hardware platform, you only have to port the
virtual machine.

Software compiled for a VM runs automatically on
any platform to which this VM is ported.

Dalvik Virtual Machine

Fig. 7: The Android Development Tools (ADT) integrated in Eclipse for debug-
ging Java code.

NEWS 2011 www.lauterbach.com8

The Reference Implementation

To be able to debug on an ARM-based Android target
TRACE32 requires the following extensions (see Fig. 8):

•	 A	 Linux	 OS-awareness	 as	 provided	 by	 Lauterbach	
since 1998.

•	 A	 Dalvik	 VM-awareness,	 which	 can	 be	 downloaded	
from the Lauterbach homepage. This just has to be
configured for the platform used.

www.lauterbach.com/vmandroid.html

It is now possible to identify and list all Java applications
now	being	run	(EXTension.VMList	 in	Fig.	8)	and	 to	ana-
lyze and view the VM stack for a selected Java applica-
tion	(EXTension.VMView	in	Fig.	8).	The	next	step	planned	
is to display the source code currently being run by the
VM. The aim of the development is of course stop-mode
debugging for VM applications with all the functions of a
modern debugger.

Fig. 8: For the reference implementation, Linux OS-awareness and Dalvik VM-
awareness have to be loaded in TRACE32.

Extensions and New RTOS Versions

•	 TRACE32	scripts	were	adapted	for	Timesys	embedded	
Linux.

•	 OSEK	/	ORTI	now	ensures	that	NEXUS	ownership	trace	
messages are generated for task changes. This enables
TRACE32 to make task-aware run-time measurements
for	the	MPC55xx	/	MPC56xx,	even	if	NEXUS	generates	
no data trace messages.

The following version adaptations have been made or are
planned:

•	 OSEck	4.0
•	 QNX	6.5.0
•	 Symbian^3	for	ARM
•	 Symbian^4	planned	for	Q1/2011
•	 Windows	CE6	for	Atom™

DSP	/	BIOS	for	ARM Q2/2011

OSEK	/	ORTI	SMP Q2/2011

T-Kernel	for	ARM available

VDK	for	Blackfin available

Windows Embedded Compact 7 for ARM available

Windows Phone 7 for ARM available

µC	/	OS-III	for	ARM available

New Supported RTOS

New Integrations with Third-Party Tools

The TRACE32 debuggers include an interface for external
access (API). This interface can be used to integrate with
third-party tools. The following integrations are planned
for 2011:

•	 EFI	/	UEFI	(Unified	Extensible	Firmware	Interface)	pro-
moted by the Unified EFI Forum on x86

•	 Matlab	/	Simulink	from	MathWorks
•	 µC	/	Probe	from	Micriµm	Inc.

9

Faster, higher, stronger! Not only is this the motto of many
sports – it has even been raised to a core principle in
microelectronics. Ever faster clock speeds and a greater
parallelization of processing steps have given us an
astonishingly constant increase in processing speed for
decades. It is no wonder that designers have also fol-
lowed this motto for the transmission of trace information
in embedded designs.

The trace interface, over which the processors deliver the
detailed information on the operation of their inner pro-
cesses, has struggled to keep up with the growing flood of
information. For many developers of embedded systems
it would be unthinkable to undertake a development with-
out this important information, so all sorts of efforts have
been made to increase the data throughput of the trace
interface. For many years the increase in clock frequency
and a greater bus-width at the trace port were an effective
way of increasing data volumes.

However, these measures have their price. Not only does
a wider trace port take up highly coveted package pins but
poor signal quality at higher clock frequencies requires
compensation on all signals from the trace bus. Thanks to
the sophisticated algorithms of its AutoFocus technology,
Lauterbach is able to ensure error-free recording of high-
frequency trace signals.

As processor architectures continue to gain in speed
and complexity through parallelization, the trace
interfaces are starting to use a high-speed data trans-
fer method that has been in use in other areas for a
long time. A high-speed serial transmission is used
in SATA, Fibre Channel, PCI Express, and USB3.0
(SuperSpeed USB). The extremely high data rates more
than compensate for the disadvantage of only a few
differential data lines.

The integration of high-speed serial interfaces on the chip
is expensive and can initially cause problems. As just one
example,	 the	 I/O	 pads	 have	 to	 be	 operated	 at	 a	 much	
higher speed. But with the increasing experience in the
implementation of serial interfaces in the gigahertz range
the knowledge gained can be used to solve many of the
problems arising with the serial trace ports.

In 2008, ARM implemented this technology with its High
Speed Serial Trace Port – HSSTP for short. This was
quickly followed by:

•	 AMCC	with	the	Titan
•	 Freescale	 with	 the	 QorIQ	 processors	 P4040	 and	

P4080
•	 Marvell	with	the	SETM3

Lauterbach had designed a hardware interface for the se-
rial trace in 2008. A universal preprocessor (see Fig. 9)
was developed on the basis of the Aurora protocol.
Only the firmware and software have to be changed to
record any of the alternative protocols. This means that
our system is already prepared for further variants of
serial trace protocols.

The large volume of trace data obviously requires a cor-
respondingly large trace memory. This is provided by the
PowerTrace II with up to 4 GBytes.

Serial Trace Port Usage Growing

Fig. 9: Following firmware and software adaptations, a universal hardware
supports the most varied protocols of serial trace interfaces.

Supported Serial Trace Ports
AMCC APM83290

Program	flow

2009

ARM-HSSTP ETMv3, PTM,
CoreSight ETMv3,
CoreSight PTM

Program	flow,
Data	flow	and	Context-ID

2008

Freescale NEXUS QorIQ
P4040 and P4080

Branch Trace and Owner-
ship Trace Messages,
Data Write Messages

2010

Marvell-SETM3 CoreSight ETMv3

Program	flow,	
Data	flow	and	Context-ID

2009

NEWS 2011 www.lauterbach.com10

Higher Transmission Rate for Real-Time Streaming

“Real-time Streaming” means transferring trace data
to the host whilst it is being recorded and analyzing it
there immediately.

•	 It	is	currently	implemented	for	the	ARM	trace	protocols	
ETMv3, PTM and software-generated trace information
as exported by the CoreSight ITM or STM.

•	 It	is	supported	by	the	TRACE32	debug	and	trace	tools	
CombiProbe and PowerTrace II.

Hardware Compression for PowerTrace II

For CPU-intensive applications and multicore systems
Real-time Streaming requires the transmission of large
volumes of data from the trace tool to the host, espe-
cially for PowerTrace II. To make TRACE32 fit for these
application scenarios, the trace data is compressed by
PowerTrace II before being transferred to the host. This
feature has been supported by the TRACE32 software
since December 2010.

The maximum transmission rate to the host is still the
bottle-neck for Real-time Streaming. Even with a peer-
to-peer GB Ethernet interface between PowerTrace II and
the	host,	the	maximum	is	currently	only	about	500	MBit/s	
net. This maximum transmission rate has to be sufficient
to transfer all data at the trace port without loss to the
host. By implementing FPGA-based hardware compres-
sion in PowerTrace II, the transmission rate to the host
was	raised	to	3.2	GBit/s.

To be able to estimate the actual data volume to be trans-
mitted, it is important to know the conditions of Real-time
Streaming:

1. The main applications for Real-time Streaming are
code coverage and run-time measurements. For both
functions, it is sufficient if only the program trace
information is exported. To get a very accurate run-time
measurement, cycle-accurate tracing can be enabled.

2. For a realistic estimate of the necessary data rate, you
just have to consider the average load at the trace
port. Peak loads at the trace port are intercepted by
PowerTrace II, which can be considered as a large
FIFO (up to 4 GB). Fig. 10 shows an overview of the
average	/	maximum	 load	 at	 the	 trace	 port	 for	 Cortex	
cores. The application running on the Cortex core ulti-
mately determines the actual load.

Pure Long-Time Trace

If trace data is analyzed and also saved to the hard-disk
during Real-time Streaming, Lauterbach considers this a
Long-time Trace.

To provide long-time tracing for other trace protocols such
as Nexus, Lauterbach is now offering pure streaming onto
the hard-disk without simultaneous analysis. This means
that trace recording of up to 1 tera-frames is possible for a
64-bit host operating system. It goes without saying that
long-time tracing only works if the average data rate at
the trace port is not exceeding the maximum transmission
rate of the host interface in use.

For detailed information on Real-time Streaming and
Long-time Trace, go to the Lauterbach homepage at:

www.lauterbach.com/tracesinks.html

Fig.	10:	 A	transmission	rate	of	3.2	GBit/s	is	usually	enough	to	transfer	program	trace	information	to	the	host	while	it	is	being	recorded.

11

The TRACE32 CombiProbe can now also be used for
measuring the energy used by applications.

The following analyses are possible:

•	 The	current/voltage	profile	at	up	to	three	measurement	
points can be displayed directly linked to the code run-
ning on the processor.

•	 The	energy	consumption	of	 the	entire	system	can	be	
analysed for the individual functions.

The following questions can now be dealt with by the
CombiProbe:

•	 Which	part	of	a	program	uses	the	most	energy?
•	 Are	there	any	unexpected	power	peaks?
•	 Does	the	program	always	switch	the	microcontroller	to	

the right power-saving mode?
•	 What	 influence	does	a	program	modification	have	on	

the energy requirements of an embedded system?

To determine the energy consumption for every point of
the program, the following measurement data has to be
collected:

•	 The	program	flow	being	exported	via	the	trace	port	of	
the processor.

•	 The	 current	 and	 voltage	 profile	 measured	 at	 suitable	
measurement points on the target hardware.

The current and voltage development for up to three power
domains can now be identified by connecting a TRACE32
Analog Probe to the CombiProbe.

Since all measurement data is time-stamped by the global
timer of the CombiProbe, you can quickly and easily see
the direct connection between executed program code
and the power consumption as well as the voltage profile
of the system.

Fig. 11 shows that a program section running from
external memory instead of cache not only needs much
more processing time but also uses more power at the
external memory.

Fig. 12 shows the energy consumption as a statistical
analysis.

Energy Profiling with the CombiProbe

Fig. 12: The minimum, maximum, and average energy consumption of indi-
vidual functions.

Fig. 11: A program section not running from the cache needs more time and
uses more current.

CombiProbe

The CombiProbe is a debug cable that also contains
a 128 MB trace memory.

The CombiProbe was specially developed for pro-
cessors	with	a	4-bit	trace	port.	Program	flow	record-
ing is currently supported for the following trace pro-
tocols:

 •	 ARM-ETMv3	in	continuous	mode	(ARM)
 •	 IFLOW	Trace	for	PIC32	(Microchip)
 •	 MCDS	Trace	for	X-GOLD102	and	X-GOLD110	
(Infineon)

www.lauterbach.com/cobstm.html

www.lauterbach.com12

BRANCHES AROUND THE WORLD

Review – ARM Expert Forum

Twice last year, customers and interested professionals
had the opportunity to discuss the debugging of ARM
cores with our TRACE32 experts. The “Expert Forum” on
May	5,	2010	was	booked	out	so	fast,	that	we	decided	to	
run	another	on	November	24	and	25.	This	was	conducted	
in English to give European customers a chance to par-
ticipate.

At both functions, the participants were able to get in-
formation about all aspects of debugging and tracing on
ARM cores. Our experts provided a deep insight into the
relationship of the individual components as well as the
special possibilities offered by the different cores. The
topics ranged from connectivity options for the different
debug and trace ports, up to the optimal analysis of trace
information.

In particular, the forum focused on the examination of multi-
core systems. The TRACE32 debug and trace concepts
for AMP and SMP systems were amplified and illustrated
with various configuration examples.

Using the example of Linux as a target operating system,
some of the many different requirements that a modern
debugging system has to meet in today’s applications
were shown. This lecture was rounded off with a look at
Lauterbach´s new development for Android debugging.

A particular highlight was the guest lecture by Ian Johnson
(ARM Ltd.), who presented details of ARM processors as
well as an interesting overview of future developments.

Outlook – Expert Forum Automotive

The positive feedback from all of the participants and
the strong demand for further events of this kind demon-
strate to us how important it is to have a function where
users and developers of our debug systems can exchange
views on a one-to-one basis.

Therefore, we plan to hold further expert forums in 2011.
On May 18, 2011, the topic will cover everything about
debug solutions for the automotive field. We will focus on
the	processor	 families	TriCore	 from	 Infineon,	MPC55xx/
MPC56xx	from	Freescale,	as	well	as	the	SPC56xx	from	
ST. One emphasis will be AUTOSAR.

For an overview of the planned topics, see the above
agenda. For more detailed information, please check our
homepage as the date gets closer.

		•		Germany
 •		France

 •		UK
 •		Italy
 •		USA
 •		China
 •		Japan

Represented by experienced
partners in all other countries

Expert Forum – Interacting with the User

Fig. 13: Technical details are clarified in a technical discussion.

Expert Forum Automotive on May 18, 2011

TRACE32 Product Overview

Development of AUTOSAR Systems / Components with TRACE32

TriCore Track Power Architecture Track

•	News	 •	News
•	Concurrent	Debugging	of	 •	Multicore	Debugging / Tracing
	TriCore	and	PCP	 •	NEXUS-based	Profiling

•	MCDS / Trigger	Language	OCTL	 •	Q&A	with	TRACE32	Experts
•	Profiling	
•	Q&A	with	TRACE32	Experts

KEEP US INFORMED

If your address has changed or if you no longer want
to be on our mailing list, please send us an e-mail to
info@lauterbach.com.

I.P.

