
General Commands Reference Guide P

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. !

 General Commands and Functions ... !

 General Commands Reference Guide P .. 1

 PCP ... 6

 PCPOnchip ... 6

 PER ... 7

 Function 7

 PER.Program Interactive programming 7

 PER.ReProgram Load default program 8

 PER.Set Modify memory 8

 PER.Set.Field Modify a bit field in memory 9

 PER.Set.Index Modify indirect (indexed) register 11

 PER.Set.Out Write data stream to memory 11

 PER.Set.SaveIndex Modify indirect (indexed) register 12

 PER.Set.SHADOW Modify data based on shadow RAM 13

 PER.Set.simple Modify memory 13

 PER.view Display peripherals 14

 Programming Commands 15

 PERF ... 16

 Profiling Results 17

 PERF.ADDRESS Restrict evaluation to specified address area 19

 PERF.ANYACCESS Access selectivity 19

 PERF.Arm Activate the Performance Analyzer manually 20

 PERF.AutoArm Couple Performance Analyzer to program execution 21

 PERF.DISable Disable the Performance Analyzer 21

 PERF.Display Select the display format 21

 PERF.Entry Function runtime analysis 22

 PERF.EntrySize Function header size 22

 PERF.Filter Suppress display of items with specified characteristic 23

 PERF.Gate Gate time of the measurements 24

 PERF.Init Reset current measurement 24

 PERF.List Default profiling 25

 PERF.ListDistriB Memory contents profiling 31

 PERF.ListFunc Function profiling 32
 General Commands Reference Guide P 1

 PERF.ListFuncMod Hll function profiling (restricted) 33

 PERF.ListLABEL Label-based profiling 35

 PERF.ListLine Profiling by hll lines 36

 PERF.ListModule Profiling by modules 37

 PERF.ListProgram Profiling based on Performance Analyzer program 37

 PERF.ListRange Profiling by ranges 38

 PERF.ListS10 Profiling in n-byte segments 39

 PERF.ListTASK Profiling by tasks/threads 40

 PERF.ListTREE Profiling by module/function tree 42

 PERF.ListVarState Variable state profiling 43

 PERF.METHOD Specify acquisition method 45

 The Method StopAndGo 46

 The Method Snoop 47

 The Method Trace 52

 The Method DCC 56

 The Emulator Methods Hardware and BusSnoop 57

 PERF.MMUSPACES tbd. 57

 PERF.Mode Specify sampling object 58

 PERF.OFF Stop the Performance Analyzer manually 61

 PERF.PreFetch Prefetch handling 61

 PERF.PROfile Graphic profiling display 62

 PERF.Program Write a Performance Analyzer program 66

 PERF.ReProgram Load an existing Performance Analyzer program 67

 PERF.RESet Reset analyzer 67

 PERF.RunTime Retain time for program run 68

 PERF.SCAN Scanning mode 68

 PERF.SnoopAddress Address for memory sample 69

 PERF.SnoopSize Size for memory sample 69

 PERF.Sort Specify sorting of evaluation results 70

 PERF.state Display state 71

 PERF.ToProgram Automatic generation of Performance Analyzer program 72

 PERF.View Detailed view 74

 POD ... 76

 POD.Level Input state 76

 POD.RESet Input level reset 76

 POD.state Input state 77

 Port ... 78

 Port.AutoFocus Calibrate AutoFocus preprocessor 78

 Port.AutoTEST Continuous measurement 78

 Port.BookMark Set a bookmark in trace listing 78

 Port.Chart.Func Function activity chart 78

 Port.Chart.GROUP Group activity chart 78

 Port.Chart.Line Graphical HLL lines analysis 79
 General Commands Reference Guide P 2

 Port.Chart.sYmbol Symbol analysis 79

 Port.Chart.TASK Task activity display 79

 Port.Chart.TASKFunc Task related function run-time analysis 79

 Port.Chart.TASKSRV Service routine run-time analysis 79

 Port.Chart.TASKState Task state analysis 79

 Port.Chart.VarState Variable activity chart 79

 Port.COVerage Trace based code coverage 80

 Port.COVerage.add Add trace contents to database 80

 Port.COVerage.Delete Coverage modification 80

 Port.COVerage.Init Clear coverage database 80

 Port.COVerage.List Coverage display 80

 Port.COVerage.ListFunc Display coverage for HLL functions 80

 Port.COVerage.ListModule Display coverage for modules 80

 Port.COVerage.ListVar Display coverage for variable 81

 Port.COVerage.LOAD Load coverage database from file 81

 Port.COVerage.RESet Clear coverage database 81

 Port.COVerage.SAVE Save coverage database to file 81

 Port.COVerage.Set Coverage modification 81

 Port.DisConfig.view Trace disassemble setting 81

 Port.DRAW Graphical data display 81

 Port.Enable Operation mode 82

 Port.Enable Operation mode 82

 Port.FindAll Find all specified entries in trace 82

 Port.MUX Select channels 82

 Port.PROTOcol.Chart Graphic display for user defined protocol 82

 Port.PROTOcol.Draw Graphic display for user defined protocol 82

 Port.PROTOcol.EXPORT Export trace buffer for user defined protocol 82

 Port.PROTOcol.Find Find in trace buffer for user defined protocol 83

 Port.PROTOcol.List Display trace buffer for user defined protocol 83

 Port.PROTOcol.STATistic Display statistics for user defined protocol 83

 Port.Select Select trigger/counter line 83

 Port.SET Select line for recording 83

 Port.SLAVE Select slave mode 83

 Port.STATistic Statistic analysis 83

 Port.STATistic Statistic analysis 84

 Port.STATistic.BondOut Bondout mode 84

 Port.STATistic.DIStance Time interval for a single event 84

 Port.STATistic.DistriB Distribution analysis 84

 Port.STATistic.DURation Time between two events 84

 Port.STATistic.Func Function runtime analysis 84

 Port.STATistic.Func Function runtime analysis 84

 Port.STATistic.GROUP Group run-time analysis 85

 Port.STATistic.Ignore Ignore false records in statistic 85
 General Commands Reference Guide P 3

 Port.STATistic.Line HLL-Line analysis 85

 Port.STATistic.LINKage Linkage analysis 85

 Port.STATistic.PreFetch Prefetch detection 85

 Port.STATistic.Sort Sort statistic results 85

 Port.STATistic.sYmbol Flat run-time analysis 85

 Port.STATistic.TASK Task run-time analysis 86

 Port.STATistic.TASKFunc Task specific function run-time analysis 86

 Port.STATistic.TASKFunc Task specific function run-time analysis 86

 Port.STATistic.TASKKernel Task run-time analysis (KENTRY/KEXIT) 86

 Port.STATistic.TASKSRV Analysis of time in OS service routines 86

 Port.STATistic.TASKState Performance analysis 86

 Port.STATistic.TASKTREE Tree display of task specific functions 86

 Port.STATistic.TREE Tree display of function run-time analysis 87

 Port.STATistic.Use Use records 87

 Port.TEST Init and arm 87

 Port.TMode Select trigger mode 87

 Probe .. 88

 Trace Methods 88

 Method Probe 89

 PULSE .. 89

 Function 90

 PULSE.PERiod Cycle duration 92

 PULSE.Pulse Programming 93

 PULSE.RESet Reset command 94

 PULSE.Single Release single pulse 94

 PULSE.state State display 95

 PULSE.Width Pulse width 96

 PULSE2 .. 96

 Function 97

 PULSE2.Pulse Programming 97

 PULSE2.RESet Reset command 99

 PULSE2.Single Release single pulse 99

 PULSE2.state Status display 99

 PULSE2.Width Pulse width 100
 General Commands Reference Guide P 4

Usage:

(B) command only available for ICD
(E) command only available for ICE
(F) command only available for FIRE
 General Commands Reference Guide P 5

General Commands Reference Guide P

Version July, 13 2010

10/28/09 The peripheral file programming commands are moved to ”Peripheral Files Programming
Commands” (per_prog.pdf).

07/08/10 PERF commands updated to correspond with the new concepts for the Performance
Analyzer.

PCP

PCPOnchip

This command group allows to display and analyze the PCP trace information stored to the on-chip trace
provided by an ED device e.g. for the TriCore architecture.

The PCPOnchip command is only applicable if the PCP debugging and tracing is performed with the same
TRACE32 instance then the core debugging (legacy PCP).

For a description of the command usage refer to the <trace> command group.
 General Commands Reference Guide P 6 PCP

PER

Function

The peripherals of integrated microcontrollers can be displayed and manipulated with the command PER.
The command offers a free configurable window for displaying memory or i/o structures. So it is possible to
display the state of peripheral chips or memory based structures very comfortably.

All microcontroller emulation probes are supported by a file which describes the internal peripherals. This file
may be modified (using logical names instead of pin numbers for i/o ports) or extended to display additional
peripherals outside the microcontroller.

Examples for different microcontrollers reside in the directory …/demo/per.

PER.Program Interactive programming

This function offers an editor with on-line syntax check to create a definition file. The input is guided by soft
keys. The syntax for the definition file is described below.

See also

■ PER.ReProgram ■ PER.view ❏ IOBASE()

 ’Register and Peripherals’ in ’ICE User’s Guide’
 ’Release Information’ in ’Release History’

Format: PER.Program [<filename>]
 General Commands Reference Guide P 7 PER

PER.ReProgram Load default program

Without parameter the default filename in the system directory is used (e.g. per68070.per). With parameter
the corresponding file is compiled. The file should not have any errors, when using this command. The
peripherals can be displayed with the PER.view command without arguments.

See also

■ PER.Program ■ PER.view ❏ IOBASE()

 ’Register and Peripherals’ in ’ICE User’s Guide’
 ’Release Information’ in ’Release History’

PER.Set Modify memory

Modifies data memory. Usually appears in the command line after a double click on a register in the
peripheral view window. See Data.Set for details on modify memory.

See also

■ PER.view

Format: PER.ReProgram [<filename>]

Format: PER.Set <address> %<format> <value> [/<option>]

format: Byte | Word | Long | Quad | TByte | TWord | BE | LE

options: Verify | ComPare
 General Commands Reference Guide P 8 PER

PER.Set.Field Modify a bit field in memory

Modifies a bit field in memory. When some register content is shown in the Peripheral window by the
HEXMASK or BITFLD command, it may be scaled with a multipiler and a summand. This command can be
used to modify the scaled value without having to unscale it manually or taking care of the bitfield’s offset.

The memory content at address <address> is read with the access width given by <format>. The bits set in
<mask> will be replaced by the corresponding bits in <value> and the new value is written to <address>.
<value> is considered to be completely within the mask, one must not specifiy any offset to the mask.

OldData: 0x53674210 0y0101.0011.0110.0111.0100.0010.0001.0000
mask: 0x007c0000 0y0000.0000.0111.1100.0000.0000.0000.0000
 --- --| <- offset -> |
value: 0x5 0y 001 01

NewData: 0x53174210 0y0101.0011.0001.0111.0100.0010.0001.0000
 -- --- --

NewData = (OldData & ~mask) | ((value<<offset(mask)) & mask)

Additionally a possbile multiplier <mult> may be specified as divisor. If the <mult> is omitted, the default is 1.
Also a possbile summand <summ> can be specified as subtrahend. If the <summ> is omitted, the default is
0. If <summ> and <mult> both specified, the division is performed before the subtraction.

tmpvalue = (<value> / <mult>) - <summ>;
tmpvalue = tmpvalue << (number of bits between <mask> and 0);
Memory(<address>) = (Memory(<address>) & <mask>) | tmpvalue;

Example1: The following perfile is given:.

Format: PER.Set.Field <address> %<format> <mask> [<mult> [<summ>]]<value>

format: Byte | Word | Long | Quad | TByte | TWord | BE | LE

GROUP D:0xBF000000++3 "Cache Configuration"
LINE.long 0 "CACHE"
HEXMASK.LONG 0x0 8.--9. 64. 0. "Cache Size ”

; Bits [9:8] are defined: 0 = 0 K Cache Size, displayed is 0x00
; 1 = 64 K Cache Size, displayed is 0x40
; 2 = 128 K Cache Size, displayed is 0x80
; 3 = 172 K Cache Size, displayed is 0xC0
 General Commands Reference Guide P 9 PER

To change the Cache Size to 128 KB, perform the following command:

As result, the content of bits [9:8] is 0y10 (0x2).

Example 2: Change single bit only and leave other bits untouched

See also

■ PER.view

PER.Set.Field D:0xBF000000 %Long 0x00000300 64. 0. 128.

PER.Set.Field D:0xF0000470 %Long 0x00002000 1. ; set bit 13
PER.Set.Field D:0xF0000470 %Long 0x01000000 0. ; clear bit 24
 General Commands Reference Guide P 10 PER

PER.Set.Index Modify indirect (indexed) register

Write or modify indirect addressed registers. <idx_addr> specifies the address register and <data_addr>
specifies the address if the data register of the indirect access.

PER.Set.Index can be translated into following commands (IS_BITMASK and APPLY_BITMASK are
pseudo-functions):

if IS_BITMASK(<data_value>)
(
 PER.Set <index_addr> %<idx_fmt> <idx_rd>
 &read_value=DATA.<data_fmt>(<data_addr>)
 &new_value=APPLY_BITMASK(&read_value,<data_value>)
)
else
(
 &new_value=<data_value>
)
PER.Set <index_addr> %<idx_fmt> <idx_wr>
PER.Set <data_addr> %<data_fmt> &new_value

If the address register <idx_addr> is read/write, it is recommended to use ”PER.Set.SaveIndex Modify
indirect (indexed) register” (general_ref_p.pdf), to restore the original setting after the access.

See also

■ PER.view

PER.Set.Out Write data stream to memory

Writes a sequence of data elements sequentially to address <address>.

See also

■ PER.view

Format: PER.Set.Index <idx_addr> %<idx_fmt> <idx_rd> <idx_wr> <data_addr>
%<data_fmt> <data_value>

idx_fmt,
data_fmt:

Byte | Word | Long | Quad | TByte | TWord | BE | LE

Format: PER.Set.Out <address> %<format> [data]
 General Commands Reference Guide P 11 PER

PER.Set.SaveIndex Modify indirect (indexed) register

Write or modify indirect addressed registers. <idx_addr> specifies the address register and <data_addr>
specifies the address if the data register of the indirect access. The original value of the register at
<idx_addr> is restored after the access.

PER.Set.SaveIndex can be translated into following commands (IS_BITMASK and APPLY_BITMASK are
pseudo-functions):

&original_idx_addr=DATA.<idx_fmt>(<index_addr>)

if IS_BITMASK(<data_value>)
(
 PER.Set <index_addr> %<idx_fmt> <idx_rd>
 &read_value=DATA.<data_fmt>(<data_addr>)
 &new_value=APPLY_BITMASK(&read_value,<data_value>)
)
else
(
 &new_value=<data_value>
)
PER.Set <index_addr> %<idx_fmt> <idx_wr>
PER.Set <data_addr> %<data_fmt> &new_value

PER.Set <index_addr> %<idx_fmt> <&original_idx_addr>

If the address register <idx_addr> can not be read (write only), use ”PER.Set.Index Modify indirect
(indexed) register” (general_ref_p.pdf).

See also

■ PER.view

Format: PER.Set.Index <idx_addr> %<idx_fmt> <idx_rd> <idx_wr> <data_addr>
%<data_fmt> <data_value>

idx_fmt,
data_fmt:

Byte | Word | Long | Quad | TByte | TWord | BE | LE
 General Commands Reference Guide P 12 PER

PER.Set.SHADOW Modify data based on shadow RAM

Modifies data as PER.Set, but modifies data both on address1 and on address2 in shadow RAM.

See also

■ PER.view

PER.Set.simple Modify memory

Modifies data memory. Usually appears in the command line after a double click on a register in the
peripheral view window. See Data.Set for details on modify memories. The command is equal to PER.Set.

See also

■ PER.view

 ’Registers’ in ’Training FIRE Basics’
 ’Registers’ in ’Training ICD Basics’
 ’Registers’ in ’Training ICE Basics’

Format: PER.Set.SHADOW <address1> <address2> %<format> <value>

format: Byte | Word | Long | Quad | TByte | TWord | BE | LE

Format: PER.Set <range> <address> [/<option>]

options: Verify | ComPare
 General Commands Reference Guide P 13 PER

PER.view Display peripherals

Without parameter the default definition file is used. With parameter a configuration file is compiled and
displayed. The optional search parameter can be used to search for a specific tree item containing the string
and open it on display.

See also

■ PER.Program ■ PER.ReProgram ■ PER.Set ■ PER.Set.Field
■ PER.Set.Index ■ PER.Set.Out ■ PER.Set.SaveIndex ■ PER.Set.SHADOW
■ PER.Set.simple

 ’Register and Peripherals’ in ’ICE User’s Guide’
 ’Release Information’ in ’Release History’
 ’Commands’ in ’C166 Family Trace’
 ’Registers’ in ’Training FIRE Basics’
 ’Registers’ in ’Training ICD Basics’
 ’Registers’ in ’Training ICE Basics’

Format: PER.view [<filename>] [<tree-search-item>]

per ; display default peripherals

per dma68430 ; display of data with file dma68430.per

E68::w.per
TIMER
TSR 80 OV0 Yes MA1 No CA1 No OV1 No MA2 No CA2 No OV2 No
TCR 00 EV1 Input Inh. M1 Timer Inh. EV2 Input Inh. M2 Time
RR 0000
T0 A1D9
T1 0000
T2 0000

PICR
CR1 00 PIR IPL IPL0 PIR IPL IPL0
CR2 00 PIR IPL IPL0 PIR IPL IPL0

DMA1
CSR 01 COC No NDT No ERR No CA No
CER 00 EC None
DCR 30 ERM Bur DT A/R DS 8
OCR 02 Dir M>D OS Byte
 General Commands Reference Guide P 14 PER

Programming Commands

For a description of the peripheral file programming commands refer to ”Peripheral Files Programming
Commands” (per_prog.pdf).
 General Commands Reference Guide P 15 PER

PERF

The TRACE32 Performance Analyzer is designed for sample-based profiling. Samples can be the actual
program counter or the actual contents of a memory location.

Sample-based profiling collects samples to calculate:

• The percentage of run-time used by a high-level language function.

• The percentage of run-time a variable had a certain contents.

• The percentage of run-time used by a task etc.

Samples are collected periodically. TRACE32 starts normally with 100 samples/s, but TRACE32´s sample
acquisition methods are auto-adaptive. They tune the sampling rate to it’s optimum.

TRACE32 supports several sample acquisition methods. Some have no or nearly no effect on the target’s
run-time behavior but require special features from the on-chip debug logic (Snoop, Trace, DCC). The
acquisition method StopAndGo is always supported, but has some impact on the target’s run-time
behavior.

Note: An unfavorable time coherence between the Performance Analyzer’s sampling rate and periodic
conditions on the target can distort the measurement results.
 General Commands Reference Guide P 16 PERF

Profiling Results

The following evaluation commands can be used if the program counter is sampled:

The following evaluation commands can be used if the contents of a memory location is sampled:

If a combi-mode is selected e.g. PERF.Mode PCMEMory the results can only be displayed independently.

PERF.state ; display the Performance
; Analyzer configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; setting

PERF.OFF ; enable the Performance
; Analyzer

PERF.Mode PCMEMory ; the Performance Analyzer
; samples the program counter
; and the contents of the
; specified memorylocation

;PERF.METHOD StopAndGo ; TRACE32 set the acquisition
; method StopAndGo

Sampled
program counter

information

PERF.ListProgram

PERF.ListTREE

PERF.ListLine

PERF.ListFunc

PERF.ListModule

PERF.ListFuncMod

PERF.ListLABEL

PERF.ListRange

PERF.ListS10

PERF.ListS100

PERF.ListS1000

PERF.ListS10000

Sampled
data

information

PERF.ListDistriB

PERF.ListVarState

PERF.ListTASK
 General Commands Reference Guide P 17 PERF

PERF.SnoopAddress V.RANGE(flags[3]) ; specify the memory location to
; to be sampled

PERF.SnoopSize Byte ; specify the sampling width

PERF.ListFunc ; open a function profiling
; window

PERF.ListVarState ; and a separate variable state
; profiling window

Go ; start the program execution
; and the sampling
 General Commands Reference Guide P 18 PERF

PERF.ADDRESS Restrict evaluation to specified address area

Restricts the evaluation of the program counter sampling to <address_range>. A given <address> is
expanded to an address range that ends at the next label. The default <address_range> is the whole
address space of the processor.

The following commands are equivalent:

The following example restricts the sample-based profiling to the function sieve.

See also

■ PERF.state

Format: PERF.ADDRESS <address> | <address_range>
(program counter sampling only)

PERF.ADDRESS V.RANGE(sieve)
PERF.ListFunc

PERF.ListFunc /Address V.RANGE(sieve)

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default settings

PERF.OFF ; enable the Performance Analyzer

PERF.Mode PC ; sample the program counter
; information

PERF.METHOD Trace ; set the acquisition method Trace

PERF.ADDRESS V.RANGE(sieve) ; restrict the evaluation of the
; result to the program range of the
; function sieve

PERF.ListLine ; open a window for the profiling of
; high-level language lines

Go ; start the program execution and the
; sampling
 General Commands Reference Guide P 19 PERF

FIRE / ICE only

PERF.ANYACCESS Access selectivity

The range definitions of the performance analyzer are normally restricted to program fetches. Data
operations will not cause the analyzer to account for the data range. This behavior can be changed when
ANYACCESS is activated. The results are also affected by data operations and will reflect more an access
histogram than a performance analysis.

See also

■ PERF.state

PERF.Arm Activate the Performance Analyzer manually

The Performance Analyzer is coupled to the program execution if PERF.AutoArm is ON (default).

If PERF.AutoArm is OFF, the Performance Analyzer can be controlled manually. PERF.Arm activates the
Performance Analyzer, PERF.OFF stops the Performance Analyzer.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’

Format: PERF.ANYACCESS [OFF | ON]

Format: PERF.Arm
 General Commands Reference Guide P 20 PERF

PERF.AutoArm Couple Performance Analyzer to program execution

The Performance Analyzer is coupled to the program execution.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’

PERF.DISable Disable the Performance Analyzer

The Performance Analyzer is disabled. Enabling can be done by entering the commands PERF.Arm or
PERF.OFF.

The measurement data are preserved until the Performance Analyzer is re-enabled.

See also

■ PERF.state

Format: PERF.ArmArm [OFF | ON]

ON (default) The Performance Analyzer starts sampling when the program
execution is started and stops when the program execution is
stopped.

OFF The Performance Analyzer has to be started and stopped
manually by the commands PERF.Arm and PERF.OFF.

Format: PERF.DISable
 General Commands Reference Guide P 21 PERF

FIRE / ICE only

PERF.Display Select the display format

tbd.

ICE only

PERF.Entry Function runtime analysis

As the analyzer detects accesses to address ranges and the number of passes to that ranges, it is usually
not possible to get the average run time of a function. The analyzer will display the mean time spent in a
function. When the Entry option is switched on, the analyzer tries to calculate the run time of a function with
a special method. Each function range is split into two ranges, a short range at the function entry and a long
range at the rest of the function. The number of passes in the function header will give the number of
function calls and allows to calculate the average run time. To work correctly the header of a function must
execute linear for some program cycles, otherwise the number of entries and the average times will be
wrong. The size of this header can be adjusted with PERF.EntrySize.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’

ICE only

PERF.EntrySize Function header size

This definition will be used if PERF.Entry is activated. It defines the size of the function header. A too small
value will cause the performance analyzer to ignore entries, and result in a too small number of entries and
a too large average time. This will occur if the time to fetch these bytes is smaller than 1 µs. A too large
value will also cause errors, when header part is not executed linear, i.e. has jumps or calls inside. This calls

Format: PERF.Display <item>

<item>: Program | TREE | LINE | Function | Module | FuncMod | LABEL | S10 |
S100 | S1000 | S10000 | DistriBution | VarState

Format: PERF.Entry [OFF | ON]

Format: PERF.EntrySize <bytes>
 General Commands Reference Guide P 22 PERF

will trigger the passed counter of the header range and cause a too large entry number and a too small
average time. The best results will be gained, if the value is chosen as small as possible, but large enough
that the fetches take more than 1 µs (check with the state analyzer and time stamps).

See also

■ PERF.state

PERF.Filter Suppress display of items with specified characteristic

PERF.Filter.SET ZEROS suppresses items with Ratio 0%.

PERF.Filter.RESet resets all filters.

Format: PERF.Filter.SET ZEROS
PERF.Filter.RESet

; store the result of function profiling to a file, but
; suppress items with 0% Ratio

PERF.ListFunc ; open a window for function
; profiling

PERF.Filter.SET ZEROS ; suppress the display of functions
; with Ratio 0%

PRinTer.FILE result1 ; specify a file name

WinPrint.PERF.ListFunc ; send the function profiling
; result to the specified file

TYPE result1.txt ; type the file contents
 General Commands Reference Guide P 23 PERF

PERF.Gate Gate time of the measurements

This command has no function. It is only available to guarantee the operation of existing PRACTICE scripts.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’

PERF.Init Reset current measurement

PERF.Init resets the current measurement. PERF.Init does not affect the Performance Analyzer
configuration.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’

Format: PERF.Gate <time> (deprecated)

Format: PERF.Init
 General Commands Reference Guide P 24 PERF

PERF.List Default profiling

Default profiling displays:

Format: PERF.List [<column> …] [/<option>]

<column>: DEFault
DYNamic
ALL
Name
TIme
WatchTIme
AVeRage (E)
DAVeRage (E)
Ratio
DRatio
BAR [.log | .LIN]
DBAR [.log | .LIN]
Passes (E)
Entrys (E)
Hits
Address
Break (E)

<option>: Track | Address <range> | <address>

PERF.ListLabel for PERF.Mode PC | PCTASK | PCMEMory

PERF.ListTASK for PERF.Mode TASK

PERF.ListDistriB for PERF.Mode MEMory
 General Commands Reference Guide P 25 PERF

Interpretation of the result:

coverage (ICE only)
otherwise 100%

runtime PERF.METHOD StopAndGo only:
Percentage of time taken by the actual program run in the last
second, the rest of the time was consumed by the measurement.

covtime (ICE only)
otherwise 100%

columns

name Name of the item (here label range)

ratio Ratio of time spent by the item in percent

bar Logarithmic bar for the ratio
 General Commands Reference Guide P 26 PERF

PERF.List ALL

columns

name Name of the item (here label range)

time Total run-time spent in item

watchtime Observation time of item

ratio Ratio of time spent by item in percent

dratio Ratio of time spent by item in the last second in percent

address Item´s address range or contents of the memory location

hits Number of samples taken for the item
 General Commands Reference Guide P 27 PERF

Columns sets:

Column description:

DEFault Select the standard set (columns: Name, Ratio and BAR.log). The DEFault
configuration is also used if no display items are specified.

DYNamic Displays the results of the last second (columns: Name, DRation, DBAR.log).

ALL Display all possible numeric fields in the PERF.List window (columns: Name,
Time, WatchTime, Ratio, DRatio, Address, Hits).

PERF.List Hits DEFault ; Open a PERF.List window starting with
; the column Hits followed by the
; default columns

Name Display the names/contents of the listed items.

Command PERF.ListFunc: If the sampled program counter can’t be assigned to
a high-level language function (e.g. assembler code, library code) it is assigned
to (other).

Command PERF.ListLine: If the sampled program counter can not be assigned to
the address range of an high-level language line, it is assigned to (other)

Command PERF.TASK: If task-ID 0x0 is sampled or if the sampled task-ID is
unknown it is assigned to (other).

TIme Total runtime spent in listed item.

WatchTIme Time the item is observed.

This time will be the same for all ranges if the program counter is sampled.

When the contents of a memory location is sampled WatchTime starts when
the listed value is detected the first time.

AVeRage
(ICE only)

The average time spent in listed item. This is either the average run time within
the function, if the Entries value is not displayed, or the average time executed
in the function, if Entries is displayed.

DAVeRage
(ICE only)

Similar to above, but only for the last measurement interval (dynamic).

Ratio Ratio of time spent by the listed item in percent. This value is calculated by
dividing the field TIme by WatchTIme.
 General Commands Reference Guide P 28 PERF

DRatio Similar to Ratio, but only for the last second.

BAR, DBAR Display the profiling values in a graphical way as horizontal bars. The default
display is logarithmic. The keyword .LIN changes to a linear display.

Passes
(ICE only)

Number of entries in a range.
NOTE: This is not the number of calls of a function. This value is also
incremented, when another range is called from this range and the processor
returns to that range.

Entrys
(ICE only)

Number of entries in a range. This value will be displayed only, if PERF.Entry is
switched to ON. You should always observe the entry code of the range to
ensure proper operation.

Hits Number of samples taken for the item.

Address Item´s address range or contents of the memory location.

Break
(ICE only)

Display of breakpoints which are in use of the performance analyzer. If there are
not all breakpoints in use, it will be possible to use other breakpoints for
triggering. The performance analyzer will recognize them as another area for
measuring.

Buttons in PERF.List window

Setup … Opens a PERF.state window that allows the configuration of the Performance
Analyzer.

Config … Opens a configuration dialog that allows to rearrange the column display in the
PERF.List window.

Goto … Opens a Perf Goto dialog which allows to bring the specified item in display
(command line equivalent Data.GOTO).

Detailed Opens a PERF.List window, which lists all numerical items (command line
equivalent PERF.List<item> ALL). Only supported for program counter sampling.

View Opens a window to display all performance data of a selected item (command line
equivalent PERF.View /Track).

Profile Opens a PERF.PROfile window that displays a graphical profiling for the first three
listed items, (other) is ignored.

Init Execute the command PERF.Init. This command resets the current measurement.
The Performance Analyzer configuration is not touched.

DISable Disable the Performance Analyzer (command line equivalent PERF.DISable).

Arm Activates the Performance Analyzer manually (command line equivalent PERF.Arm)

ToProgram A Performance Analyzer program is generated out of the currently shown address
ranges (program counter sampling only). The command line equivalent is
PERF.ToProgram.
 General Commands Reference Guide P 29 PERF

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’
 ’Release Information’ in ’Release History’

Context menu items

View This window displays all performance data for the selected line (command line
equivalent PERF.View <address>).

Profile Opens a PERF.PROfile window that displays a graphical profiling for the selected
line.

Detailed Opens a PERF.List window, which lists all numerical items (command line
equivalent PERF.List<item> ALL). Only supported for program counter sampling.

Line Opens a PERF.ListLine window for the selected item (command line equivalent
PERF.ListLine /Address <range>). Only supported for program counter sampling.

S10/S100/
S1000/
S10000

Opens a PERF.ListSn window for the selected item (command line equivalent
PERF.ListSn /Address <range>). Only supported for program counter sampling.

Options

Track Tracks the window to the reference position of other
windows.

Address <range> | <address> Restricts the evaluation of the profiling results to the
specified address range. If only an <address> is given it is
expanded to an address range that ends at the next label.
Only supported for program counter sampling.
 General Commands Reference Guide P 30 PERF

PERF.ListDistriB Memory contents profiling

Report the percentage of run-time a memory location had a certain value.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

Format: PERF.ListDistriB [<column> …] [/Track]
(memory contents sampling)

; example for ARM9

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; setting

PERF.OFF ; enable the Performance Analyzer

PERF.Mode MEMory ; the Performance Analyzer samples
; the contents of a memory location

;PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF.SnoopAddress 0x4BD60 ; specify the memory location

PERF.SnoopSize Long ; specifies the sampling width

PERF.ListDistriB ; open a memory contents
; profiling window

Go ; start the program execution and
; sampling
 General Commands Reference Guide P 31 PERF

See also

■ PERF.state

PERF.ListFunc Function profiling

Reports the percentage of run-time used by high-level language functions.

If the sample program counter can not be assigned to the address range of an hll function, it is assigned to
(other). The command PERF.ListLABEL can be used to get more information on what is assigned to
(other).

Format: PERF.ListFunc [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>

; example for ARM9

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter

PERF.METHOD Trace ; set the acquisition method Trace

PERF.ListFunc ; open a window for function
; profiling

Go ; start the program execution and
; sampling
 General Commands Reference Guide P 32 PERF

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

See also

■ PERF.state

PERF.ListFuncMod Hll function profiling (restricted)

Report the percentage of run-time spent in high-level language functions inside the address range specified
by the PERF.ADDRESS command. Outside the specified address range the percentage is reported on
module base.

Format: PERF.ListFuncMod [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>

; example for ARM9

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter
 General Commands Reference Guide P 33 PERF

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

See also

■ PERF.state

; PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter

PERF.ADDRESS 0x38000--0x38fff ; specify address range

PERF.ListFuncMod ; display a function profiling
; inside the specified address
; range and module profiling
; outside the specified address
; range

Go ; start the program execution and
; sampling
 General Commands Reference Guide P 34 PERF

PERF.ListLABEL Label-based profiling

Reports the percentage of run-time spent in the address range between two labels.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-

Format: PERF.ListLABEL [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>

; example for ARM9

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter

; PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF.Sort OFF ; the result is sorted by the
; succession of the labels in the
; symbol data base

PERF.ListLABEL ; open a window for label-based
; profiling

Go ; start the program execution and
; sampling
 General Commands Reference Guide P 35 PERF

down in give in the description of the PERF.List command.

See also

■ PERF.state

PERF.ListLine Profiling by hll lines

Reports the percentage of run-time spent in high-level language lines.

If the sampled program counter can not be assigned to the address range of an hll line, it is assigned to
(other). If the time spent in (others) is high the command PERF.ListLABEL can be used to get more
information.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

See also

■ PERF.state

Format: PERF.ListLine [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>
 General Commands Reference Guide P 36 PERF

PERF.ListModule Profiling by modules

Reports the percentage of run-time spent in program modules.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

See also

■ PERF.state

PERF.ListProgram Profiling based on Performance Analyzer program

Reports the percentage of run-time spent in the address ranges specified by the Performance Analyzer
program. A complete example on how to work with a Performance Analyzer program is give in the
description of the PERF.Program command.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

See also

■ PERF.state

Format: PERF.ListModule [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>

Format: PERF.ListProgram [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>
 General Commands Reference Guide P 37 PERF

PERF.ListRange Profiling by ranges

Reports the percentage of run-time spent in all ranges specified in the symbol data base.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

See also

■ PERF.state

Format: PERF.ListRange [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>
 General Commands Reference Guide P 38 PERF

PERF.ListS10 Profiling in n-byte segments

Reports the percentage of run-time spent in 16/256/4096/65536 byte segments.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

See also

■ PERF.state

Format: PERF.ListS10 [<column> …] [/<option>]
PERF.ListS100 [<column> …] [/<option>]
PERF.ListS1000 [<column> …] [/<option>]
PERF.ListS10000 [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>
 General Commands Reference Guide P 39 PERF

PERF.ListTASK Profiling by tasks/threads

Reports the percentage of run-time spent in different tasks/threads based on the sampling of the contents of
the OS-variable that contains the identifier for the current task/tread.

Format: PERF.ListTASK [<column> …] [/Track]
(memory contents sampling)

; example for ARM9 and RTOS ECOS

TASK.CONFIG ecos ; enable ECOS aware debugging

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode TASK ; the Performance Analyzer samples
; the contents of the variable that
; contains the identifier for the
; current task

; PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF.Mode TASK ; the Performance Analyzer samples
; data information from
; TASK.CONFIG(magic)

PERF.ListTASK ; open a window to display a
; a task profiling

Go ; start the program execution and
; the sampling
 General Commands Reference Guide P 40 PERF

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

See also

■ PERF.state

; example for ARM9 and proprietary target-OS

; inform TRACE32 which variable contains the identifier for the
; current task
; ~~ represents the TRACE32 installation directory
TASK.CONFIG ~~\demo\kernel\simple\simple.t32 current_task

; specify names for the indivual tasks
Task.NAME.Set 0x4bca "Idle Task"
TASK.NAME.Set 0x58cc0 "Thread 1"

; list specified task names
TASK.NAME.view

; display the Performance Analyzer configuration window
PERF.state

; reset the Performance Analyzer configuration to its default settings
PERF.RESet

; enable Performance Analyzer
PERF.OFF

; the Performance Analyzer samples the contents of the variable that
; contains the identifier for the current task
PERF.Mode TASK

; TRACE32 sets the acquisition method StopAndGo
; PERF.METHOD StopAndGo

; open a window to display a task profiling
PERF.ListTASK

; start the program execution and the sampling
Go
 General Commands Reference Guide P 41 PERF

PERF.ListTREE Profiling by module/function tree

Reports the percentage of run-time spent in modules/functions as a tree display. The tree is based on the
module/function information provided by the symbol data base.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

See also

■ PERF.state

Format: PERF.ListTREE [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>
 General Commands Reference Guide P 42 PERF

PERF.ListVarState Variable state profiling

Reports the percentage of run-time a variable had a certain contents.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down in give in the description of the PERF.List command.

Format: PERF.ListVarState [<column> …] [/Track]
(memory contents sampling)

; example for ARM9

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode MEMory ; the Performance Analyzer
; samples the contents of
; a memory location

; PERF.METHOD StopAndGo ; TRACE32 set the acquisition
; method StopAndGo

PERF.SnoopAddress V.RANGE(sched_Lock) ; specifies the address range
; of the variable

PERF.SnoopSize Long ; specifies the sampling width

PERF.ListVarState ; open a window for variable
; profiling

Go ; start the program execution
; and sampling
 General Commands Reference Guide P 43 PERF

See also

■ PERF.state
 General Commands Reference Guide P 44 PERF

PERF.METHOD Specify acquisition method

The TRACE32 software sets automatically the acquisition method Snoop:

• If the processor allows to read the program counter while the program execution is running and
PERF.Mode PC is selected.

• If the processor allows to read the contents of a memory locations while the program execution is
running and PERF.Mode MEMory or TASK is selected.

Otherwise the default method is set to StopAndGo.

Format: PERF.METHOD <mode>

<mode>: StopAndGo
Trace
Snoop
DCC (only if JTAG interface provides Data Communications Channel)

Hardware (E)
BusSnoop (E,F)

Performance Analyzer Methods

StopAndGo The target processor is stopped periodically in order to get the
actual program counter or in order to read the data information of
interest (intrusive). For details refer to “The Method StopAndGo”
in General Commands Reference Guide P, page 46
(general_ref_p.pdf).

Snoop The actual program counter or the data information of interest is
read while the program execution is running (non-intrusive). For
details refer to “The Method Snoop” in General Commands
Reference Guide P, page 47 (general_ref_p.pdf).

Trace This method requires an off-chip trace port. In order to get the
actual program counter or the data information of interest, the
trace recording is stopped shorty to get a big enough section of the
most recent trace information (non-intrusive). For details refer to
“The Method Trace” in General Commands Reference Guide P,
page 52 (general_ref_p.pdf).

DCC The Performance Analyzer sample the data provided via the DCC
(intrusive due to code instrumentation in the target application).
For details refer to “The Method DCC” in General Commands
Reference Guide P, page 56 (general_ref_p.pdf).
 General Commands Reference Guide P 45 PERF

The Method StopAndGo

The method StopAndGo is available for all processors.

The target processor is stopped periodically in order to get the actual program counter or in order to
read the data information of interest. The target processor is restarted afterwards. A stop and restart of
the target processor can take more than 1 ms in a worst case scenario.

The display of a red S in the TRACE32 state line indicates, that the program execution is periodically
interrupted by the Performance Analyzer.

The field snoops/s in the PERF.state window shows how much stops have been performed in the last
second.

The field runtime in the PERF.List<item> window shows the percentage of time taken by the actual
program run in the last second.

TRACE32 starts the sampling with 100 stops per second, but then tunes the sampling rate so that more the
99% of the run-time is retained for the actual program run. The smallest possible sampling rate is
nevertheless 10.

A fixed percentage of time can be retained for the actual program run by the command PERF.RunTime.
 General Commands Reference Guide P 46 PERF

The Method Snoop

The actual program counter or the data information of interest is read while the program execution is running
(non-intrusive).

Non intrusive sample-based profiling can be done, if the target processor supports

• reading the program counter while the target program is running.

• reading memory (never cache) while the target program is running.

TRACE32 is optimizing the sampling rate. The achieved sampling rate of the last second is displayed in the
field snoops/s in the PERF.state window.

Combi-modes e.g. PERF.Mode PCMEMory operate only if both, reading the program counter and reading
memory is supported while the target program is running.

Processor architecture that allow to read the program counter
while the program execution is runing

ARC600
ARC700

ARM1136
Cortex-M0
Cortex-M1
Cortex-M3
Cortex-A5
Cortex-A9

If Program Counter Sampling Register (PCSR) is
implemented

Blackfin

CEVA-X1622
TeakLite-III

DSP56300
DSP56800E

M8051EW

MIPS32
MIPS64

Starting from eJTAG 3.1

R8051XC
 General Commands Reference Guide P 47 PERF

TMS320C28xx
TMS320C54xx
TMS320C55xx
TMS320C62xx
TMS320C64xx
TMS320C67xx

TriCore

Processor architecture that allow to read the program counter
while the program execution is runing
 General Commands Reference Guide P 48 PERF

Processor architectures that allow to read memory (not cache)
while the program execution is running

78K0R

ARC600
ARC700

Blackfin Only via Background Telemetric Channel

ColdFire

Cortex-A/R
other ARM cores

If the DAP is connected to the AHB bus

Cortex-M

MPC55xx/56xx Via NEXUS block

S12X, MCS12, 68HC12

SH2/SH2A

TMS320C28xx
TMS320C54xx
TMS320C55xx
TMS320C62xx
TMS320C64xx
TMS320C67xx

TriCore

XC2000/C166S V2

ZSP500 Debug Emulation Unit only
 General Commands Reference Guide P 49 PERF

; program counter sampling

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the program counter

;PERF.METHOD Snoop ; TRACE32 detects automatically
; that reading the program counter
; is possible while the program
; execution is running

PERF.ListFunc ; open a window for function
; profiling

Go ; start the program execution and
; the measurement

; memory contents sampling

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode MEMory ; the Performance Analyzer samples
; the contents of a memory location
 General Commands Reference Guide P 50 PERF

;PERF.METHOD Snoop ; TRACE32 detects automatically
; that reading memory is possible
; while the program execution is
; running

PERF.SnoopAddress 0xA108002F ; specifies the memory address

PERF.SnoopSize Word ; specifies the sampling width

PERF.ListDistriB ; open a window for memory contents
; profiling

Go ; start the program execution and
; the measurement
 General Commands Reference Guide P 51 PERF

The Method Trace

This non-intrusive method is only available if the processor provides an off-chip trace port. Please make
sure, that the trace recording is working correctly before you use the PERF.METHOD Trace.

In order to get the actual program counter or the data information of interest, the trace recording is stopped
shortly to get a big enough section of the most recent trace information.

The field snoop fails in the PERF.state window shows how often TRACE32 failed to get the requested
information out of the captured section.

The display of perf in blue in any Trace display window indicates, that the trace recording was periodically
interrupted by the Performance Analyzer. In this case the trace information is inappropriate for any trace
analysis.

Sampling the actual program counter (PERF.Mode PC)

If the actual program counter is sampled the source code is required to decompress the trace information. If
the target processor doesn’t allow to read memory while the program execution is running, the source code
has to be loaded to the TRACE32 virtual memory.

Sampling data information (PERF.Mode MEMory/TASK)

If data information is sampled it is recommended to set a filter on the data of interest. Otherwise the number
of snoop fails will be too high.
 General Commands Reference Guide P 52 PERF

; example for MPC5554, NEXUS block allows to read source code from
; memory while the program execution is running

...

TRANSlation.Create 0x0--0xffffffff 0x0 ; specify 1:1 translation of
; effective to real addresses
; for debugger MMU

TRANSlation.ON ; activate translation via
; debugger MMU

...

NEXUS.DTM OFF ; switch data trace off in
; order to reduce load on the
; NEXUS port

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.METHOD Trace ; set acquisition method Trace

PERF.Mode PC ; the Performance Analyzer
; samples the program counter

PERF.ListFunc ; open a window for
; function profiling

Go ; start the program execution
; and the sampling
 General Commands Reference Guide P 53 PERF

; example for ARM920, load source code to virtual memory of TRACE32
; because it is not possible to read the source code from memory while
; the program execution is running

Data.LOAD.Elf armle.axf /VM ; load source code to virtual
; memory of TRACE32

ETM.DataTrace OFF ; switch data trace off in order to
; reduce load on ETM trace port

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.METHOD Trace ; set acquisition method Trace

PERF.Mode PC ; the Performance Analyzer samples
; the program counter

PERF.ListLABEL ; open a window for label-based
; profiling

Go ; start the program execution and
; the sampling
 General Commands Reference Guide P 54 PERF

; example for ARM920, a filter is set to advise the ETM to only broadcast
; trace information if a write access to the variable flags[3] occurs

Var.Break.Set flags[3] /TraceEnable /Write ; configure the ETM so
; that only write
; accesses to the
; variable flags[3] are
; broadcasted

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration
; to its default settings

PERF.OFF ; enable Performance
; Analyzer

PERF.METHOD Trace ; set acquisition method
; Trace

PERF.Mode MEMory ; the Performance
; Analyzer samples
; memory contents

PERF.SnoopAddress V.RANGE(flags[3]) ; specifies the sampling
; address

PERF.SnoopSize Byte ; specifies the sampling
; width

PERF.ListVarState ; open a variable state
; profiling window

Go ; start the program
; execution and
; the sampling
 General Commands Reference Guide P 55 PERF

The Method DCC

DCC (Debug Communications Channel) is a feature of the on-chip debugging logic currently available for all
ARM/Cortex cores (not Cortex-M) and the StarCore architecture. DCC allows the target program to provide
data of interest to the TRACE32 debugger. For details on DCC refer to the manual of your target CPU.

Examples on how to use the DCC with TRACE32 are given in the example directory on the TRACE32
software DVD

~~\demo\arm\etc\semihosting_arm_dcc.

The Performance Analyzer sample the data provided via the DCC. The DCC method is recommended
mainly for PERF.Mode MEMory and TASK.

TRACE32 is optimizing the sampling rate. The achieved sampling rate of the last second is displayed in the
field snoops/s in the PERF.state window.

; example for ARM920

... ; the contents of a variable is
; sent via DCC to TRACE32

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.METHOD DCC ; set acquisition method DCC

PERF.Mode MEMory ; the Performance Analyzer samples
; data information

PERF.ListVarState ; open a variable state profiling
; window

Go ; start the program execution and
; the sampling
 General Commands Reference Guide P 56 PERF

The Emulator Methods Hardware and BusSnoop

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’

PERF.MMUSPACES tbd.

Not implemented yet.

If a target operating system (e.g. Linux) is used that uses dynamic memory management to handle
processes/tasks several processes/tasks can run at the same virtual addresses. In this szenario the virtual
address sampled by the Performance Analyzer is not sufficient to assign the address to a function or
variable. For a clear assignement the address space identifier is also required.

Hardware
(ICE only)

A system of 64 (ECC8: 32) hardware counters is used to count the PC fetches
in up to 64 (32) different ranges. 6 breakpoint types are needed to divide the 64
different ranges.

BusSnoop
(ICE/FIRE
only)

The PC fetch of the target CPU is read from the bus while the CPU is running.
This fetch address is used to count the corresponding address range counter by
software. If the fetch is outside any defined range, the “(other)” counter is
incremented

Format: PERF.MMUSPACES [ON | OFF]

OFF (default) The Performance Analyzer does standard sampling.

ON The Performance Analyzer checks the address space identifier
with every sample.
 General Commands Reference Guide P 57 PERF

PERF.Mode Specify sampling object

Selects the sampling object for the sample-based profiling.

TRACE32 samples in essence either:

• the actual program counter (PC)

• the contents of a memory location (MEMory, TASK)

• or both simultaneously (PCMEMory, PCTASK)

The sampled program counter information and the sampled data information can only be profiled
independent from each other.

Format: PERF.Mode <mode>

<mode>: PC
TASK
MEMory
PCTASK
PCMEMory

LeVel (E,F)
FLAGs (E,F)
 General Commands Reference Guide P 58 PERF

PC The actual program counter is sampled.

TASK The contents of the variable that contains the identifier for the actual task is
sampled.

If OS aware debugging is configured, TRACE32 knows the address of this
variable (TASK.CONFIG(magic)).

Context-ID packets are not supported.

MEMory The memory address specified by the command PERF.SnoopAddress is
sampled in the size specified by the command PERF.SnoopSize.

PCTASK The actual program counter and the contents of the variable that contains
the identifier for the actual task are sampled.
The information is sampled simultaneous, but can only be evaluated
separately.

PCMEMory The actual program counter and the memory address specified by the
command PERF.SnoopAddress is sampled in the size specified by the
command PERF.SnoopSize.
The information is sampled simultaneous, but can only be evaluated
separately.

LeVel tbd.

FLAGs tbd.
 General Commands Reference Guide P 59 PERF

Not all PERF Modes are suitable for all PERF METHODs. The table below provides a summary.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’
 ’Release Information’ in ’Release History’

Mode
PC

Mode
MEMory/TASK

Mode
PCMEMory/PCTASK

METHOD
StopAndGo

yes yes yes

METHOD
Trace

yes yes, but requires
appropriate filter

no

METHOD
Snoop

yes, if the program
counter can be read
during program run

yes, if memory can
be read during
program run

yes, if program
counter and memory
can be read during
program run

METHOD
DCC

no yes no
 General Commands Reference Guide P 60 PERF

PERF.OFF Stop the Performance Analyzer manually

The Performance Analyzer is coupled to the program execution if PERF.AutoArm is ON (default).

If PERF.AutoArm is OFF, the Performance Analyzer can be controlled manually. PERF.Arm activates the
Performance Analyzer, PERF.OFF stops the Performance Analyzer.

If the Performance Analyzer is disabled (state disable) it can be enable by PERF.OFF.

See also

■ PERF.state

Format: PERF.OFF
 General Commands Reference Guide P 61 PERF

ICE only

PERF.PreFetch Prefetch handling

Because many processors have a prefetch mechanism, they read program areas, but never execute them.
This causes the performance analyzer to display times for functions, that were never executed. To prevent
this behavior, the ranges programmed have to be a little bit smaller than the defined value. This ensures, that
prefetches do not cause the analyzer to count functions that never executed. The disadvantage is, of course,
a measurement error caused by the too small range. The PERF.PreFetch command allows to select
between the two modes. If activated (default) the ranges are shortened by the maximum number of prefetch
cycles of the target processor.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’

PERF.PROfile Graphic profiling display

The Performance Analyzer charts the percentage of time spent in the specified item over the time axis.

By default the display is updated once per second while the minimum update period is 100 ms. Within the
update period a large number of PC samples is required to calculate a statistically relevant distribution of the
runtime. Therefore using slow sample methods like StopAndGo with short update periods will give imprecise
results.

Format: PERF.PreFetch [OFF | ON]

Format: PERF.PROfile <channel> [<channel> [<channel>]] [<gate> <scale>]

<channel>: <range> | <address> | <value>

<gate>: 0.1s | 1.0s | 10.0s

<scale>: 1. … 32768.
 General Commands Reference Guide P 62 PERF

Up to three channels may be displayed in one window. Channels correspond to a code areas like functions,
address ranges, addresses, tasks or memory/variable contents.

An opened window may be zoomed using the soft. Use the vertical auto zooming feature for best getting the
best vertical resolution. The auto zoom is switched off by supplying a scale factor, manual zoom or vertical
scrolling. The scale factor must be a power of 2.

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default settings

PERF.OFF ; enable the Performance Analyzer

PERF.METHOD StopAndGo ; take the samples for the profiling
; from the recorded trace information

PERF.Mode TASK ; sample the program counter
; information

PERF.PROFILE ; restrict the evaluation of the
; result to the program range of the
; function sieve

PERF.ListFunc ; assign the sampled program counter
; information to the hll functions and
; display the profiling

PERF.state ; Display the performance analyzer
; configuration window

PERF.RESet ; Reset the performance analyzer
; configuration

PERF.Mode Function ; Select the operation mode
; function for the analysis

PERF.METHOD Trace ; Use the trace as acquisition
; method of the performance values

PERF.PROfile func2 func2B ; Display time chart for functions
; func2 and func2B

PERF.PROfile funcA funcB funcC ; time chart for funcA, funcB, funcC

PERF.PROfile 0x1A0--0x220 0x420-
0x2310 0x2000-0x3020

; time chart for given address
; ranges
 General Commands Reference Guide P 63 PERF

E::PERF.PROfile
-25.0s 0.

ratio
100.

50.

0.

Zoom In T Zoom Out T Zoom In Y Zoom Out Y Hold AutoZoom
 General Commands Reference Guide P 64 PERF

See also

■ PERF.state

Buttons

Zoom In T Zoom in vertical axis by factor 2.

Zoom Out T Zoom out vertical axis by factor 2.

Zoom In Y Zoom in horizontal axis by factor 2.

Zoom Out Y Zoom out horizontal axis by factor 2.

Hold Stop Updating.

AutoZoom Auto zooming of the vertical axis.
 General Commands Reference Guide P 65 PERF

PERF.Program Write a Performance Analyzer program

PERF.Program opens a Performance Analyzer programming window that allows to restrict the evaluation of
the program counter sampling to address ranges of interest.

Format: PERF.Program [<file>]
(program counter sampling only)

Buttons in the PERF.Program window

Save Save the Performance Analyzer program.
If no name is specified the default name t32.ps is used.

Save As … Save the Performance Analyzer program under a different name.

Save + Close Save the Performance Analyzer program and close the Performance Ana-
lyzer programming window.

Quit + Close Quit editing and close the Performance Analyzer programming window.

Save + Comp Save the Performance Analyzer program and activate it as done by Com-
pile.

Compile Compiles the Performance Analyzer program. The evaluation of the profil-
ing is restricted to the specified address ranges in all PERF.List<item> win-
dows that evaluate sampled program counter information.

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable the Performance Analyzer

; PERF.METHOD StopAndGo ; the acquisition method StopAndGo
; is set by TRACE32
 General Commands Reference Guide P 66 PERF

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’
 ’Release Information’ in ’Release History’

PERF.ReProgram Load an existing Performance Analyzer program

Loads an existing, error-free Performance Analyzer program to the Performance Analyzer.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’
 ’Release Information’ in ’Release History’

PERF.RESet Reset analyzer

All settings of the performance analyzer and all marked breakpoints will be destroyed. The windows of the
performance analyzer will be changed to the freeze mode and the performance analyzer will be disabled.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’

PERF.ReProgram my_program.ps ; load a existing, error-free
; Performance Analyzer program

PERF.ListProgram ; open a window for Performance
; Analyzer program based profiling

Go ; start the program execution and
; the sampling

Format: PERF.ReProgram [<file>]
(program counter sampling only)

Format: PERF.RESet
 General Commands Reference Guide P 67 PERF

PERF.RunTime Retain time for program run

If PERF.METHOD StopAndGo is used a fraction of time is taken by the sample-based performance
measurement, the rest is used by the actual program run. The command PERF.RunTime allows to specify
the percentage of time that should be retained for the actual program run.

The adjustment of the snoops/s is done gradually (see the snoops/s field in the PERF.state window).

See also

■ PERF.state

ICE only

PERF.SCAN Scanning mode

When more ranges than available counters are covered and the Ratio sort mode is selected then the
performance analyzer enters a scanning mode. In this mode the analyzer searches for the most time
consuming areas. When these areas are found, it may be useful to disable the scanning and monitor only
these ranges.

See also

■ PERF.state

Format: PERF.RunTime <value>

PERF.RunTime 90. ; 90% of time is retained for the
; actual program run, the sample-
; based performance measurement can
; take 10% of the time

PERF.RunTime 90% ; alternative input format

Format: PERF.SCAN [OFF | ON]
 General Commands Reference Guide P 68 PERF

PERF.SnoopAddress Address for memory sample

Defines the memory address for snoop modes (DistriBution, VarState). Supplying an address range
defines also the size of the memory operation (PERF.SnoopSize).

See also

■ PERF.state

PERF.SnoopSize Size for memory sample

Defines the memory access size for snoop modes (DistriBution, VarState).

See also

■ PERF.state

Format: PERF.SnoopAddress <address> | <range>
(memory contents sampling only)

Format: PERF.SnoopSize Byte | Word | Long
(memory contents sampling only)
 General Commands Reference Guide P 69 PERF

PERF.Sort Specify sorting of evaluation results

As a default the results are sorted by ratio.

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’

Format: PERF.Sort <mode>

<mode>: OFF
Address
sYmbol
Ratio

OFF Don't sort. Results of the program counter sampling are sorted by address,
results of memory contents sampling are sorted by occurrence.

Address Sort evaluation result by addresses (program counter sampling only).

sYmbol Sort evaluation result by symbol names (program counter sampling only).

Ratio Sort evaluation result by the ratio of time used by the items.
 General Commands Reference Guide P 70 PERF

PERF.state Display state

Displays control window for Performance Analyzer.

The field 'scans done' displays the number of scans already completed. The field will be displayed only, if the
scanning mode is active, i.e. Ratio is active and more ranges than available counters are covered. The
'current scan' field displays the ratio of the scanned ranges to total the number of ranges. The 'covered time'
field gives the time covered by the current set of ranges.

See also

■ PERF.ADDRESS ■ PERF.ANYACCESS ■ PERF.Arm ■ PERF.AutoArm
■ PERF.DISable ■ PERF.Entry ■ PERF.EntrySize ■ PERF.Gate
■ PERF.Init ■ PERF.List ■ PERF.ListDistriB ■ PERF.ListFunc
■ PERF.ListFuncMod ■ PERF.ListLABEL ■ PERF.ListLine ■ PERF.ListModule
■ PERF.ListProgram ■ PERF.ListRange ■ PERF.ListS10 ■ PERF.ListTASK
■ PERF.ListTREE ■ PERF.ListVarState ■ PERF.METHOD ■ PERF.Mode
■ PERF.OFF ■ PERF.PreFetch ■ PERF.PROfile ■ PERF.Program
■ PERF.ReProgram ■ PERF.RESet ■ PERF.RunTime ■ PERF.SCAN
■ PERF.SnoopAddress ■ PERF.SnoopSize ■ PERF.Sort ■ PERF.ToProgram
■ PERF.View ❏ PERF.WATCHTIME()

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’

Format: PERF.state
 General Commands Reference Guide P 71 PERF

PERF.ToProgram Automatic generation of Performance Analyzer program

The different PERF.List<item> commands partition the address spaces into address ranges in order to
evaluate the sampled program counter information. Examples:

The command PERF.ToProgram converts the current segmentation into a Performance Analyzer program.

TRACE32 allows up to 1024 address ranges in a Performance Analyzer program.

Format: PERF.ToProgram
(program counter sampling only)

PERF.ListFunc Partitions the address space in function ranges

PERF.ListLine Partitions the address space in high-level language line ranges

PERF.ListModule Partitions the address space in module ranges

; example for ARM9

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter

; PERF.METHOD StopAndGo ; acquisition method StopAndGo
; is set by TRACE32

PERF.ListLABEL ; open a window for label-based
; profiling

Go ; start the program execution and
; sampling

Break ; stop the program execution and
; the sampling

PERF.ToProgram ; convert the listed label ranges
; to a Performance Analyzer program
 General Commands Reference Guide P 72 PERF

See also

■ PERF.state
 General Commands Reference Guide P 73 PERF

PERF.View Detailed view

Displays all numerical results of a symbol or an area.

Format: PERF.View <address> | /Track

PERF.View sieve ; list all numerical results for
; the function sieve

PERF.state ; display the Performance
; Analyzer configuration window

PERF.RESet ; reset the Performance Analyzer
; to its default settings

PERF.OFF ; enable the Performance
; Analyzer

PERF.Mode MEMory ; the Performance Analyzer
; samples the contents of a
; memory location

; PERF.Mode StopAndGo ; the Performance Analyzer sets
; the acquisition method
; StopAndGo

PERF.SnoopAddress V.RANGE(flags[3]) ; specify the memory address

PERF.SnoopSize Byte ; specify the sampling width

PERF.ListVarState ; open a window for variable
; state profiling

Go ; start the program execution
; and the sampling

PERF.View /Track ; list all numerical results for
; the item selected in
; PERF.List<item>
 General Commands Reference Guide P 74 PERF

See also

■ PERF.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Performance Analysis’ in ’ICE Performance Analyzer User’s Guide’
 General Commands Reference Guide P 75 PERF

POD

POD.Level Input state

The PowerIntegrator has input probes with variable threshold level. Default is 1.4 V for all CMOS and TLL
targets down to 2.5 V supply voltage.

See also

■ POD.state

POD.RESet Input level reset

All input threshold levels are set to 1.4 V.

See also

■ POD.state

Format: POD.Level <group> <level>

<group>:

<level>: 1.0
1.4
<variable value>

Format: POD.RESet
 General Commands Reference Guide P 76 POD

POD.state Input state

See also

■ POD.Level ■ POD.RESet

Format: POD.state

PP::POD
0-15 0 1 2 3 4 5 Input
1.0 0000000000000000
16-31 0 1 2 3 4 5 Input
1.0 0000000000000000
32-47 0 1 2 3 4 5 Input
1.4 0000000000000000
48-63 0 1 2 3 4 5 Input
1.4 0000000000000000
 General Commands Reference Guide P 77 POD

Port

Port.AutoFocus Calibrate AutoFocus preprocessor

see command <trace>.AutoFocus in 'General Commands Reference Guide T' (general_ref_t.pdf, page
51)

Port.AutoTEST Continuous measurement

see command <trace>.AutoTEST in 'General Commands Reference Guide T' (general_ref_t.pdf, page
56)

Port.BookMark Set a bookmark in trace listing

see command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
58)

Port.Chart.Func Function activity chart

see command <trace>.Chart.Func in 'General Commands Reference Guide T' (general_ref_t.pdf, page
73)

Port.Chart.GROUP Group activity chart

see command <trace>.Chart.GROUP in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 74)

NOTE: If not otherwise mentioned, the described commands refer the timing analyzer
mode!
 General Commands Reference Guide P 78 Port

Port.Chart.Line Graphical HLL lines analysis

see command <trace>.Chart.Line in 'General Commands Reference Guide T' (general_ref_t.pdf, page
75)

Port.Chart.sYmbol Symbol analysis

see command <trace>.Chart.sYmbol in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 78)

Port.Chart.TASK Task activity display

see command <trace>.Chart.TASK in 'General Commands Reference Guide T' (general_ref_t.pdf, page
79)

Port.Chart.TASKFunc Task related function run-time analysis

see command <trace>.Chart.TASKFunc in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 80)

Port.Chart.TASKSRV Service routine run-time analysis

see command <trace>.Chart.TASKSRV in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 80)

Port.Chart.TASKState Task state analysis

see command <trace>.Chart.TASKState in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 81)

Port.Chart.VarState Variable activity chart

see command <trace>.Chart.VarState in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 82)
 General Commands Reference Guide P 79 Port

Port.COVerage Trace based code coverage

see command <trace>.COVerage in 'General Commands Reference Guide T' (general_ref_t.pdf, page 87)

Port.COVerage.add Add trace contents to database

see command <trace>.COVerage.add in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 88)

Port.COVerage.Delete Coverage modification

see command <trace>.COVerage.Delete in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 89)

Port.COVerage.Init Clear coverage database

see command <trace>.COVerage.Init in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 89)

Port.COVerage.List Coverage display

see command <trace>.COVerage.List in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 90)

Port.COVerage.ListFunc Display coverage for HLL functions

see command <trace>.COVerage.ListFunc in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 91)

Port.COVerage.ListModule Display coverage for modules

see command <trace>.COVerage.ListModule in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 92)
 General Commands Reference Guide P 80 Port

Port.COVerage.ListVar Display coverage for variable

see command <trace>.COVerage.ListVar in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 93)

Port.COVerage.LOAD Load coverage database from file

see command <trace>.COVerage.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 94)

Port.COVerage.RESet Clear coverage database

see command <trace>.COVerage.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 94)

Port.COVerage.SAVE Save coverage database to file

see command <trace>.COVerage.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 94)

Port.COVerage.Set Coverage modification

see command <trace>.COVerage.Set in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 95)

Port.DisConfig.view Trace disassemble setting

see command <trace>.DisConfig.view in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 98)

Port.DRAW Graphical data display

see command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 99)
 General Commands Reference Guide P 81 Port

Port.Enable Operation mode

see command <trace>.Enable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 99)

Port.Enable Operation mode

see command <trace>.Enable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 99)

Port.FindAll Find all specified entries in trace

see command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 107)

Port.MUX Select channels

see command <trace>.MUX in 'General Commands Reference Guide T' (general_ref_t.pdf, page 137)

Port.PROTOcol.Chart Graphic display for user defined protocol

see command <trace>.PROTOcol.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 141)

Port.PROTOcol.Draw Graphic display for user defined protocol

see command <trace>.PROTOcol.Draw in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 143)

Port.PROTOcol.EXPORT Export trace buffer for user defined protocol

see command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 144)
 General Commands Reference Guide P 82 Port

Port.PROTOcol.Find Find in trace buffer for user defined protocol

see command <trace>.PROTOcol.Find in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 145)

Port.PROTOcol.List Display trace buffer for user defined protocol

see command <trace>.PROTOcol.List in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 146)

Port.PROTOcol.STATistic Display statistics for user defined protocol

see command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 149)

Port.Select Select trigger/counter line

see command <trace>.Select in 'General Commands Reference Guide T' (general_ref_t.pdf, page 161)

Port.SET Select line for recording

see command <trace>.SET in 'General Commands Reference Guide T' (general_ref_t.pdf, page 163)

Port.SLAVE Select slave mode

see command <trace>.SLAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 169)

Port.STATistic Statistic analysis

see command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
172)
 General Commands Reference Guide P 83 Port

Port.STATistic Statistic analysis

see command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
172)

Port.STATistic.BondOut Bondout mode

see command <trace>.STATistic.BondOut in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 176)

Port.STATistic.DIStance Time interval for a single event

see command <trace>.STATistic.DIStance in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 181)

Port.STATistic.DistriB Distribution analysis

see command <trace>.STATistic.DistriB in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 185)

Port.STATistic.DURation Time between two events

see command <trace>.STATistic.DURation in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 188)

Port.STATistic.Func Function runtime analysis

see command <trace>.STATistic.Func in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 193)

Port.STATistic.Func Function runtime analysis

see command <trace>.STATistic.Func in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 193)
 General Commands Reference Guide P 84 Port

Port.STATistic.GROUP Group run-time analysis

see command <trace>.STATistic.GROUP in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 218)

Port.STATistic.Ignore Ignore false records in statistic

see command <trace>.STATistic.Ignore in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 219)

Port.STATistic.Line HLL-Line analysis

see command <trace>.STATistic.Line in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 223)

Port.STATistic.LINKage Linkage analysis

see command <trace>.STATistic.LINKage in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 226)

Port.STATistic.PreFetch Prefetch detection

see command <trace>.STATistic.PreFetch in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 230)

Port.STATistic.Sort Sort statistic results

see command <trace>.STATistic.Sort in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 231)

Port.STATistic.sYmbol Flat run-time analysis

see command <trace>.STATistic.sYmbol in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 232)
 General Commands Reference Guide P 85 Port

Port.STATistic.TASK Task run-time analysis

see command <trace>.STATistic.TASK in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 236)

Port.STATistic.TASKFunc Task specific function run-time analysis

see command <trace>.STATistic.TASKFunc in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 241)

Port.STATistic.TASKFunc Task specific function run-time analysis

see command <trace>.STATistic.TASKFunc in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 241)

Port.STATistic.TASKKernel Task run-time analysis (KENTRY/KEXIT)

see command <trace>.STATistic.TASKKernel in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 249)

Port.STATistic.TASKSRV Analysis of time in OS service routines

see command <trace>.STATistic.TASKSRV in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 252)

Port.STATistic.TASKState Performance analysis

see command <trace>.STATistic.TASKState in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 252)

Port.STATistic.TASKTREE Tree display of task specific functions

see command <trace>.STATistic.TASKTREE in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 256)
 General Commands Reference Guide P 86 Port

Port.STATistic.TREE Tree display of function run-time analysis

see command <trace>.STATistic.TREE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 258)

Port.STATistic.Use Use records

see command <trace>.STATistic.Use in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 259)

Port.TEST Init and arm

see command <trace>.TEST in 'General Commands Reference Guide T' (general_ref_t.pdf, page 262)

Port.TMode Select trigger mode

see command <trace>.TMode in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270)
 General Commands Reference Guide P 87 Port

Probe

Trace Methods

The command Trace is a general command for trace display and configuration. It is available for all kind of
trace methods provided by TRACE32.

The following trace methods are available:

• Analyzer

• ART

• FDX

• Integrator

• LogicAnalyzer

• LOGGER

• On-chip

• Probe

• PORT

• SNOOPer

The currently used trace method is displayed in the METHOD field of the Trace.state window.

B::Trace.state
METHOD

√Analyzer ART Logger SNOOPer FDX

state used TDelay
DISable 0.

√ OFF 65535. 0%
Arm SIZE

trigger 65535. ACCESS
break

Mode
commands √ Fifo

RESet Stack
Init BusTrace

TEST ClockTrace
List √FlowTrace

√ AutoArm Poststore
AutoInit PostTrace
AutoTEST √ SLAVE
 General Commands Reference Guide P 88 Probe

Method Probe

The trace method Probe is mainly used for TRACE32-ICD without a trace extension.

Problem description: A TRACE32-ICD debugger is used to test and integrate an application program on
the target. Now a problem occurs, that could easily be solved if more information about the program history
would be available.

Usually a TRACE32-ICD trace extension can be used to get more information about the program history. But
not all targets allow the operation of such a trace. For these targets TRACE32 is offering a software trace.
The software trace however needs RAM from the target and is influencing the real-time behavior.

To operate a software trace, TRACE32 provides:

• a general trace format for a software trace located in the target RAM.

• configuration and display commands for the software trace in the TRACE32 software
(command: Probe).

• predefined algorithms to operate the software trace from the target program.

To use the software trace basic knowledge of the target hardware and the processor architecture is required.

Implementation of
the trace memory

The user reserves a part of the target RAM, that can be used for the trace
information.

Max. trace size Any desired.

Sampling The trace memory is filled either by an algorithm predefined by
LAUTERBACH or by a user defined algorithm.
The algorithm can either be called by an interrupt or the code has to be
instrumented.

Influence on the
real-time behavior

Yes, how much depends on the implementation of the sampling
algorithm.

Selective tracing Possible by the sampling algorithm.

Fastest sampling
rate

Depends on the sampling algorithm.
 General Commands Reference Guide P 89 Probe

ICE only

PULSE

Function

The pulse generator is an independent system for generating short pulses or static signals, like used for
stimulation in the target system or to reset the target hardware. The output pin of the generator is placed on
the output probe of the ECU module. The triggering may occur periodically, manually by the keyboard, or by
the trigger unit of the analyzer. If no pulse generation is needed, the output line will be set to high or low by
selecting the polarity of the pulse.

Rate
generator
0 … 200 s Puls Polarity

generator switch Puls output
Single

0 … 6.4 ms
Analyzer

Puls Generator on ECU32

Puls
Single generator Low Puls

0 … 6.4 ms

Puls Generator on ECC8
 General Commands Reference Guide P 90 PULSE

Pin assignment of the STROBE probe (ECU32)

Pin assignment of the STROBE probe (ECC8)

Pin 1 Line 0 EVENT

Pin 3 Line 1 TriggerAddress

Pin 5 Line 2 RUN-(Foreground)

Pin 7 Line 3 TRIGGER

Pin 9 Line 4 SIGnal

Pin 11 Line 5 RUNCYCLE-

Pin 13 Line 6 PULSE2

Pin 15 Line 7 PULSE

Pin 2,4,6,8,10,12,14,16 Ground

Pin 1 Line 0 OUT.C

Pin 3 Line 1 OUT.D

Pin 5 Line 2 RUN-(Foreground)

Pin 7 Line 3 TRIGGER

Pin 9 Line 4 CharlyBreak

Pin 11 Line 5 RUNCYCLE-

Pin 13 Line 6 PULSE2

Pin 15 Line 7 PULSE

Pin 2,4,6,8,10,12,14,16 Ground

LED O O O O O O O O

Pin 15 13 11 9 7 5 3 1

o o o o o o o o
o o o o o o o o

Pin 16 14 12 10 8 6 4 2

LED O O O O O O O O

Pin 15 13 11 9 7 5 3 1

o o o o o o o o
o o o o o o o o

Pin 16 14 12 10 8 6 4 2
 General Commands Reference Guide P 91 PULSE

PULSE.PERiod Cycle duration

On ECC8 the period is limited to 6.5 ms. The pulse width is automatically set to half of the period time or
100ns on ECC8.

See also

■ PULSE.Pulse ■ PULSE.state ■ PULSE.Width

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Pulse Generator’ in ’ICE User’s Guide’

Format: PULSe.PERiod <width> | ON | OFF

<width>: 0.4us … 200.s

pulse.per off ; set pulse generator to single pulse mode

pulse.per on ; set pulse generator to periodic pulse
; mode

pulse.per 1.ms ; activate periodic mode, cycle duration
; is 1 ms (1 kHz)
 General Commands Reference Guide P 92 PULSE

PULSE.Pulse Programming

On ECC8 the period is limited to 6.5 ms. The pulse width is automatically set to half of the period time or
100ns on ECC8.

See also

■ PULSE.PERiod ■ PULSE.Single ■ PULSE.state ■ PULSE.Width

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Pulse Generator’ in ’ICE User’s Guide’

Format: PULSE.Pulse [<width>] [<period>] [<polarity>]

<width>: 0.1us … 6.4ms

<period>: 0.4us … 200.s | ON | OFF

<polarity>: + | -

pulse.pulse 100.us 1.ms - ; Pulse active low, 100 µs, 1 kHz

pulse.pulse 100.us + ; Single pulse 100 µs, active high

pulse - ; active low pulse

pulse off
pulse -
…
pulse +

; switch off
; set output to high level

; set output to low level

Puls 1.ms -

1 ms

Puls 1.ms +

1 ms

Puls 200.us 1.ms +

1 ms 200 µs
 General Commands Reference Guide P 93 PULSE

PULSE.RESet Reset command

See also

■ PULSE.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Pulse Generator’ in ’ICE User’s Guide’

PULSE.Single Release single pulse

Releasing more then one single pulse occurs under software control, i.e. the time between two pulses is not
constant.

See also

■ PULSE.Pulse ■ PULSE.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Pulse Generator’ in ’ICE User’s Guide’

Format: PULSE.RESet

Format: PULSE.Single [<count>]

<count>: 1 …

pulse.s ; Release single pulse

pulse.s 3. ; Release threefold pulse

Puls.Width 200.us
Puls.Single 3.

undefined 200 µs
 General Commands Reference Guide P 94 PULSE

PULSE.state State display

Display state of the pulse generator.

See also

■ PULSE.PERiod ■ PULSE.Pulse ■ PULSE.RESet ■ PULSE.Single
■ PULSE.Width

 ’Emulator Functions’ in ’FIRE User’s Guide’

Format: PULSE.state

E68::w.pulse
Pulse

Single Button for single pulse
+ Polarity

√ -
Width
1.000 µs Pulse width
Period

100.000 µs Cycle duration for periodic release

E68::
width: 1.000 µs period:100.000 µs pol: -
 General Commands Reference Guide P 95 PULSE

PULSE.Width Pulse width

The pulse width is limited to 6.5 ms on the ECC8. Periodical pulses can only be 100 ns or 50% ratio on the
ECC8.

See also

■ PULSE.PERiod ■ PULSE.Pulse ■ PULSE.state

 ’Emulator Functions’ in ’FIRE User’s Guide’
 ’Pulse Generator’ in ’ICE User’s Guide’
 ’Pulse Generator’ in ’ICE User’s Guide’

Format: PULSE.Width <width>

<width>: 0.4us … 25.0ms

pulse.width 20.u ; Set pulse width to 20 µs

pulse.w 5.ms ; Set pulse width to 5 ms
 General Commands Reference Guide P 96 PULSE

ICE only

PULSE2

Function

The pulse generator 2 is an independent system for generating short pulses. The output pin of the generator
is placed on the output probe of the ECU module. This pulse generator is software controlled, the pulse
periods may not match exactly. Mainly this output may be used as an reset signal for the target system. If no
pulse is needed, but a signal which may be programmed to fixed levels, this may be done by setting the
polarity (+ = LOW, - = HIGH).

Pin assignment of the STROBE probe (ECU32)

Pin 1 Line 0 OUT.C

Pin 3 Line 1 OUT.D

Pin 5 Line 2 RUN-(Foreground)

Pin 7 Line 3 TRIGGER

Pin 9 Line 4 CharlyBreak

Pin 11 Line 5 RUNCYCLE-

Pin 13 Line 6 PULSe2

Pin 15 Line 7 PULSe

Pin 2,4,6,8,10,12,14,16 Ground

LED O O O O O O O O

Pin 15 13 11 9 7 5 3 1

o o o o o o o o
o o o o o o o o

Pin 16 14 12 10 8 6 4 2
 General Commands Reference Guide P 97 PULSE2

Pin assignment of the STROBE probe (ECC8)

ICE only

PULSE2.Pulse Programming

See also

■ PULSE2.state

Pin 1 Line 0 OUT.C

Pin 3 Line 1 OUT.C

Pin 5 Line 2 RUN-(Foreground)

Pin 7 Line 3 TRIGGER

Pin 9 Line 4 SIGnal

Pin 11 Line 5 RUNCYCLE-

Pin 13 Line 6 PULSe2

Pin 15 Line 7 PULSe

Pin 2,4,6,8,10,12,14,16 Ground

Format: PULSE2.Pulse [<width>] [<polarity>]

<width>: 10.0us … 25.0ms

<polarity>: + | -

pulse2.pulse 100.us - ; Pulse active low, 100 µs

pulse2 - ; active low pulse

LED O O O O O O O O

Pin 15 13 11 9 7 5 3 1

o o o o o o o o
o o o o o o o o

Pin 16 14 12 10 8 6 4 2
 General Commands Reference Guide P 98 PULSE2

PULSE2.RESet Reset command

See also

■ PULSE2.state

ICE only

PULSE2.Single Release single pulse

The releasing of more than one single pulse occurs under software control, therefore the time between two
pulses is not constant.

See also

■ PULSE2.state

Format: PULSE2.RESet

Format: PULSE.Single2 [<count>]

<count>: 1 …

pulse2.s ; Release single pulse

pulse2.s 3. ; Release threefold pulse
 General Commands Reference Guide P 99 PULSE2

ICE only

PULSE2.state Status display

Display state of the second pulse generator.

See also

■ PULSE2.Pulse ■ PULSE2.RESet ■ PULSE2.Single ■ PULSE2.Width

PULSE2.Width Pulse width

See also

■ PULSE2.state

Format: PULSE2.state

Format: PULSE2.Width <width>

<width>: 10.0us … 25.0ms

pulse2.width 20.us ; Set pulse width to 20 µs

pulse2.w 10.ms ; Set pulse width to 10 ms

E68::w.puls2
Pulse

Single Button for single pulse
+ Polarity

√ -
Width

100.000 µs Pulse width

E68::
width:100.000 µs pol: -
 General Commands Reference Guide P 100 PULSE2

	General Commands Reference Guide P
	PCP
	PCPOnchip
	PER
	Function
	PER.Program Interactive programming
	PER.ReProgram Load default program
	PER.Set Modify memory
	PER.Set.Field Modify a bit field in memory
	PER.Set.Index Modify indirect (indexed) register
	PER.Set.Out Write data stream to memory
	PER.Set.SaveIndex Modify indirect (indexed) register
	PER.Set.SHADOW Modify data based on shadow RAM
	PER.Set.simple Modify memory
	PER.view Display peripherals
	Programming Commands

	PERF
	Profiling Results
	PERF.ADDRESS Restrict evaluation to specified address area
	PERF.ANYACCESS Access selectivity
	PERF.Arm Activate the Performance Analyzer manually
	PERF.AutoArm Couple Performance Analyzer to program execution
	PERF.DISable Disable the Performance Analyzer
	PERF.Display Select the display format
	PERF.Entry Function runtime analysis
	PERF.EntrySize Function header size
	PERF.Filter Suppress display of items with specified characteristic
	PERF.Gate Gate time of the measurements
	PERF.Init Reset current measurement
	PERF.List Default profiling
	PERF.ListDistriB Memory contents profiling
	PERF.ListFunc Function profiling
	PERF.ListFuncMod Hll function profiling (restricted)
	PERF.ListLABEL Label-based profiling
	PERF.ListLine Profiling by hll lines
	PERF.ListModule Profiling by modules
	PERF.ListProgram Profiling based on Performance Analyzer program
	PERF.ListRange Profiling by ranges
	PERF.ListS10 Profiling in n-byte segments
	PERF.ListTASK Profiling by tasks/threads
	PERF.ListTREE Profiling by module/function tree
	PERF.ListVarState Variable state profiling
	PERF.METHOD Specify acquisition method
	The Method StopAndGo
	The Method Snoop
	The Method Trace
	The Method DCC
	The Emulator Methods Hardware and BusSnoop

	PERF.MMUSPACES tbd.
	PERF.Mode Specify sampling object
	PERF.OFF Stop the Performance Analyzer manually
	PERF.PreFetch Prefetch handling
	PERF.PROfile Graphic profiling display
	PERF.Program Write a Performance Analyzer program
	PERF.ReProgram Load an existing Performance Analyzer program
	PERF.RESet Reset analyzer
	PERF.RunTime Retain time for program run
	PERF.SCAN Scanning mode
	PERF.SnoopAddress Address for memory sample
	PERF.SnoopSize Size for memory sample
	PERF.Sort Specify sorting of evaluation results
	PERF.state Display state
	PERF.ToProgram Automatic generation of Performance Analyzer program
	PERF.View Detailed view

	POD
	POD.Level Input state
	POD.RESet Input level reset
	POD.state Input state

	Port
	Port.AutoFocus Calibrate AutoFocus preprocessor
	Port.AutoTEST Continuous measurement
	Port.BookMark Set a bookmark in trace listing
	Port.Chart.Func Function activity chart
	Port.Chart.GROUP Group activity chart
	Port.Chart.Line Graphical HLL lines analysis
	Port.Chart.sYmbol Symbol analysis
	Port.Chart.TASK Task activity display
	Port.Chart.TASKFunc Task related function run-time analysis
	Port.Chart.TASKSRV Service routine run-time analysis
	Port.Chart.TASKState Task state analysis
	Port.Chart.VarState Variable activity chart
	Port.COVerage Trace based code coverage
	Port.COVerage.add Add trace contents to database
	Port.COVerage.Delete Coverage modification
	Port.COVerage.Init Clear coverage database
	Port.COVerage.List Coverage display
	Port.COVerage.ListFunc Display coverage for HLL functions
	Port.COVerage.ListModule Display coverage for modules
	Port.COVerage.ListVar Display coverage for variable
	Port.COVerage.LOAD Load coverage database from file
	Port.COVerage.RESet Clear coverage database
	Port.COVerage.SAVE Save coverage database to file
	Port.COVerage.Set Coverage modification
	Port.DisConfig.view Trace disassemble setting
	Port.DRAW Graphical data display
	Port.Enable Operation mode
	Port.Enable Operation mode
	Port.FindAll Find all specified entries in trace
	Port.MUX Select channels
	Port.PROTOcol.Chart Graphic display for user defined protocol
	Port.PROTOcol.Draw Graphic display for user defined protocol
	Port.PROTOcol.EXPORT Export trace buffer for user defined protocol
	Port.PROTOcol.Find Find in trace buffer for user defined protocol
	Port.PROTOcol.List Display trace buffer for user defined protocol
	Port.PROTOcol.STATistic Display statistics for user defined protocol
	Port.Select Select trigger/counter line
	Port.SET Select line for recording
	Port.SLAVE Select slave mode
	Port.STATistic Statistic analysis
	Port.STATistic Statistic analysis
	Port.STATistic.BondOut Bondout mode
	Port.STATistic.DIStance Time interval for a single event
	Port.STATistic.DistriB Distribution analysis
	Port.STATistic.DURation Time between two events
	Port.STATistic.Func Function runtime analysis
	Port.STATistic.Func Function runtime analysis
	Port.STATistic.GROUP Group run-time analysis
	Port.STATistic.Ignore Ignore false records in statistic
	Port.STATistic.Line HLL-Line analysis
	Port.STATistic.LINKage Linkage analysis
	Port.STATistic.PreFetch Prefetch detection
	Port.STATistic.Sort Sort statistic results
	Port.STATistic.sYmbol Flat run-time analysis
	Port.STATistic.TASK Task run-time analysis
	Port.STATistic.TASKFunc Task specific function run-time analysis
	Port.STATistic.TASKFunc Task specific function run-time analysis
	Port.STATistic.TASKKernel Task run-time analysis (KENTRY/KEXIT)
	Port.STATistic.TASKSRV Analysis of time in OS service routines
	Port.STATistic.TASKState Performance analysis
	Port.STATistic.TASKTREE Tree display of task specific functions
	Port.STATistic.TREE Tree display of function run-time analysis
	Port.STATistic.Use Use records
	Port.TEST Init and arm
	Port.TMode Select trigger mode

	Probe
	Trace Methods
	Method Probe

	PULSE
	Function
	PULSE.PERiod Cycle duration
	PULSE.Pulse Programming
	PULSE.RESet Reset command
	PULSE.Single Release single pulse
	PULSE.state State display
	PULSE.Width Pulse width

	PULSE2
	Function
	PULSE2.Pulse Programming
	PULSE2.RESet Reset command
	PULSE2.Single Release single pulse
	PULSE2.state Status display
	PULSE2.Width Pulse width

